Advertisement

Optimal Strategy with One Closing Instant for a Linear Optimal Guaranteed Control Problem

Article

Abstract

We consider an optimal guaranteed control problem for a linear time-varying system that is subject to unknown bounded disturbances. A control strategy is defined that guarantees steering the system to a given terminal set for any realization of disturbances and takes into account that at one future time instant the control loop will be closed. An efficient method for constructing the optimal control strategy and an algorithm for optimal feedback control based on this type of strategies are proposed.

Keywords

optimal control linear time-varying system disturbances guaranteed control control strategy algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Witsenhausen, “A minimax control problem for sampled linear systems,” IEEE Trans. Autom. Control 13 (1), 5–21 (1968).MathSciNetCrossRefGoogle Scholar
  2. 2.
    N. N. Krasovskii, Control of Dynamic Systems: The Problem of a Minimum Guaranteed Result (Nauka, Moscow, 1985) [in Russian].Google Scholar
  3. 3.
    A. B. Kurzhanski, Control and Observation under Uncertainty (Nauka, Moscow, 1977) [in Russian].Google Scholar
  4. 4.
    P. O. M. Scokaert and D. Q. Mayne, “Min-max feedback model predictive control for constrained linear systems,” IEEE Trans. Autom. Control 43 (8), 1136–1142 (1998).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    J. H. Lee and Z. Yu, “Worst-case formulations of model predictive control for systems with bounded parameters,” Automatica 33 (5), 763–781 (1997).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    O. Kostyukova and E. Kostina, “Robust optimal feedback for terminal linear-quadratic control problems under disturbances,” Math. Program. 107 (1–2), 131–153 (2006).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    O. I. Kostyukova and M. A. Kurdina, “Guaranteed optimal control strategies with intermediate points of correction,” Trudy Inst. Mat. 14 (1), 82–93 (2006).Google Scholar
  8. 8.
    P. J. Goulart, E. C. Kerrigan, and J. M. Maciejowski, “Optimization over state feedback policies for robust control with constraints,” Automatica 42 (4), 523–533 (2006).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained model predictive control using linear matrix inequalities,” Automatica 32 (10), 1361–1379 (1996).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    J. Löfberg, Minimax Approaches to Robust Model Predictive Control (Linkoping University Electronic, 2003).Google Scholar
  11. 11.
    A. Bemporad et al., “Model predictive control based on linear programming the explicit solution,” IEEE Trans. Autom. Control 47 (12), 1974–1985 (2002).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    E. C. Kerrigan and J. M. Maciejowski, “Feedback min-max model predictive control using a single linear program: Robust stability and the explicit solution,” Int. J. Robust Nonlinear Control 14 (4), 395–413 (2004).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    R. Gabasov, F. M. Kirillova, and E. A. Kostina, “Subtended feedback with respect to state for optimization of uncertain control systems. I: Single loop,” Autom. Remote Control 57 (7), 1008–1015 (1996).MATHGoogle Scholar
  14. 14.
    N. V. Balashevich, R. Gabasov, and F. M. Kirillova, “The construction of optimal feedback from mathematical models with uncertainty,” Comput. Math. Math. Phys. 44 (2), 247–267 (2004).MathSciNetMATHGoogle Scholar
  15. 15.
    E. Kostina and O. Kostyukova, “Worst-case control policies for (terminal) linear-quadratic control problems under disturbances,” Int. J. Robust Nonlinear Control 19 (17), 1940–1958 (2009).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    R. Gabasov, N. M. Dmitruk, and F. M. Kirillova, “Optimal guaranteed control of delay systems,” Proc. Steklov Inst. Math. 255, Suppl. 2, 26–46 (2006).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    K. T. Chong, O. Kostyukova, and M. Kurdina, “Guaranteed control policy with arbitrary set of correction points for linear-quadratic system with delay,” Control Cybern. 39 (3), 1723–1733 (2010).MathSciNetMATHGoogle Scholar
  18. 18.
    N. Dmitruk, R. Findeisen, and F. Allgower, “Optimal measurement feedback control of finite-time continuous linear systems,” IFAC Proc. 41 (2), 15339–15344 (2008).CrossRefGoogle Scholar
  19. 19.
    R. Gabasov, F. M. Kirillova, and E. I. Poyasok, “Robust optimal control on imperfect measurements of dynamic systems states,” Appl. Comput. Math. 8 (1), 54–69 (2009).MathSciNetMATHGoogle Scholar
  20. 20.
    A. B. Kurzhanski and P. Varaiya, “On reachability under uncertainty,” SIAM J. Control Optim. 41 (1), 181–216 (2002).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    A. Bemporad, F. Borrelli, and M. Morari, “Min-max control of constrained uncertain discrete-time linear systems,” IEEE Trans. Autom. Control 48 (9), 1600–1606 (2003).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    G. B. Dantzig, Linear Programming and Extensions (Princeton Univ. Press, Princeton, N.J., 1963).CrossRefMATHGoogle Scholar
  23. 23.
    S. N. Chernikov, “Linear inequalities,” in Research Advances, Ser. Mathematics, Algebra, Topology, Geometry (VINITI, Moscow, 1966), pp. 137–187 [in Russian].Google Scholar
  24. 24.
    C. Jones, E. C. Kerrigan, and J. Maciejowski, “Equality set projection: A new algorithm for the projection of polytopes in half-space representation,” Cambridge Univ. Eng. Dept., No. EPFL-REPORT-169768 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Belarusian State UniversityMinskBelarus

Personalised recommendations