Advertisement

Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator

  • P. N. Vabishchevich
Article

Abstract

A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.

Keywords

evolution equation elliptic operator fractional-power operator two-level difference schemes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Baleanu, Fractional Calculus: Models and Numerical Methods (World Scientific, New York, 2012).CrossRefzbMATHGoogle Scholar
  2. 2.
    A. C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002).zbMATHGoogle Scholar
  3. 3.
    A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).zbMATHGoogle Scholar
  4. 4.
    P. Knabner and L. Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential Equations (Springer, New York, 2003).zbMATHGoogle Scholar
  5. 5.
    A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations (Springer, Berlin, 1994).zbMATHGoogle Scholar
  6. 6.
    N. J. Higham, Functions of Matrices: Theory and Computation (SIAM, Philadelphia, 2008).CrossRefzbMATHGoogle Scholar
  7. 7.
    M. Ilic, I. Turner, and V. Anh, “A numerical solution using an adaptively preconditioned Lanczos method for a class of linear systems related with the fractional Poisson equation,” Int. J. Stochastic Anal. 2008, Article ID 104525 (2008).Google Scholar
  8. 8.
    K. Burrage, N. Hale, and D. Kay, “An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations,” SIAM J. Sci. Comput. A 34 (4), 2145–2172 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    M. Ilic, F. Liu, I. Turner, and V. Anh, “Numerical approximation of a fractional-in-space diffusion equation I,” Fractional Calculus Appl. Anal. 8 (3), 323–341 (2005).MathSciNetzbMATHGoogle Scholar
  10. 10.
    M. Ilic, F. Liu, I. Turner, and V. Anh, “Numerical approximation of a fractional-in-space diffusion equation II. with nonhomogeneous boundary conditions,” Fractional Calculus Appl. Anal. 9 (4), 333–349 (2006).MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. Bueno-Orovio, D. Kay, and K. Burrage, “Fourier Spectral methods for fractional-in-space reaction-diffusion equations,” BIT Numer. Math. 54 (4), 937–954 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    P. N. Vabishchevich, “Numerically solving an equation for fractional powers of elliptic operators,” J. Comput. Phys. 282 (1), 289–302 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    P. N. Vabishchevich, “Numerical solution of nonstationary problems for a space-fractional diffusion equation,” Fractional Calculus Appl. Anal. 19 (1), 116–139 (2016).MathSciNetzbMATHGoogle Scholar
  14. 14.
    I. Gavrilyuk, W. Hackbusch, and B. Khoromskij, “Data-sparse approximation to the operator-valued functions of elliptic operator,” Math. Comput. 73 (247), 1297–1324 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    I. Gavrilyuk, W. Hackbusch, and B. Khoromskij, “Data-sparse approximation to a class of operator-valued functions,” Math. Comput. 74 (250), 681–708 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. Bonito and J. Pasciak, “Numerical approximation of fractional powers of elliptic operators,” Math. Comput. 84 (295), 2083–2110 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M. A. Krasnosel’skii, P. P. Zabreiko, E. I. Pustyl’nik, and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions (Nauka, Moscow, 1966) [in Russian].zbMATHGoogle Scholar
  18. 18.
    L. C. Evans, Partial Differential Equations (Am. Math. Soc., Providence, 1998).zbMATHGoogle Scholar
  19. 19.
    S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods (Springer, New York, 2008).CrossRefzbMATHGoogle Scholar
  20. 20.
    V. Thomée, Galerkin Finite Element Methods for Parabolic Problems (Springer, Berlin, 2006).zbMATHGoogle Scholar
  21. 21.
    A. A. Samarskii, The Theory Of Difference Schemes (Marcel Dekker, New York, 2001).CrossRefzbMATHGoogle Scholar
  22. 22.
    A. A. Samarskii, P. P. Matus, and P. N. Vabishchevich, Difference Schemes with Operator Factors (Kluwer, Boston, 2002).CrossRefzbMATHGoogle Scholar
  23. 23.
    G. I. Marchuk, “Splitting and alternating direction methods,” Handbook of Numerical Analysis (North-Holland, Amsterdam, 1990), Vol. 1, pp. 197–462.MathSciNetzbMATHGoogle Scholar
  24. 24.
    P. N. Vabishchevich, Additive Operator-Difference Schemes: Splitting Schemes (de Gruyter, Berlin, 2014).zbMATHGoogle Scholar
  25. 25.
    P. N. Vabishchevich, “On a new class of additive (splitting) operator-difference schemes,” Math. Comput. 81 (277), 267–276 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    P. N. Vabishchevich, “Additive schemes (splitting schemes) for some systems of evolutionary equations,” Math. Comput. 83 (290), 2787–2797 (2014).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Nuclear Safety InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Ammosov North-Eastern Federal UniversityYakutskRussia

Personalised recommendations