Skip to main content
Log in

Search for Periodic Solutions of Highly Nonlinear Dynamical Systems

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Numerical-analytical methods for finding periodic solutions of highly nonlinear autonomous and nonautonomous systems of ordinary differential equations are considered. Algorithms for finding initial conditions corresponding to a periodic solution are proposed. The stability of the found periodic solutions is analyzed using corresponding variational systems. The possibility of studying the evolution of periodic solutions in a strange attractor zone and on its boundaries is discussed, and interactive software implementations of the proposed algorithms are described. Numerical examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Loskutov, “Dynamical chaos: Systems of classical mechanics,” Usp. Fiz. Nauk 50 (9), 939–964 (2007).

    Article  Google Scholar 

  2. The Duffing Equation: Nonlinear Oscillators and Their Behavior, Ed. by I. Kovacic and M. J. Brennan (Wiley, Chichester, 2011).

  3. P. J. Holmes, “A nonlinear oscillator with a strange attractor,” Philos. Trans. R. Soc. London Ser. A Math. Phys. Sci. 292 (1394), 419–448 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  4. B. I. Kryukov, Forced Oscillations of Essentially Nonlinear Systems (Mashinostroenie, Moscow, 1984) [in Russian].

    Google Scholar 

  5. L. F. Petrov, “Nonlinear effects in economic dynamic models,” Nonlinear Anal. 71, 2366–2371 (2009).

    Article  MathSciNet  Google Scholar 

  6. L. F. Petrov, Methods for Dynamic Economic Analysis (Infra-M, Moscow, 2010) [in Russian].

    Google Scholar 

  7. M. K. Kerimov and E. V. Selimkhanov, “On exact estimates of the convergence rate of Fourier series for functions of one variable in the space L2[−π,π],” Comput. Math. Math. Phys. 56 (5), 717–729 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Urabe, “Galerkin’s procedure for nonlinear periodic systems,” Arch. Ration. Mech. Anal. 20, 120–152 (1965).

    Article  MATH  Google Scholar 

  9. A. A. Abramov and L. F. Yukhno, “A numerical method for solving systems of nonlinear equations,” Comput. Math. Math. Phys. 55 (11), 1794–1801 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. A. Garanzha, A. I. Golikov, Yu. G. Evtushenko, and M. X. Nguen, “Parallel implementation of Newton’s method for solving large_scale linear programs,” Comput. Math. Math. Phys. 49 (8), 1303–1317 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu. A. Chernyaev, “Convergence of the gradient projection method and Newton’s method as applied to optimization problems constrained by intersection of a spherical surface and a convex closed set,” Comput. Math. Math. Phys. 56 (10), 1716–1731 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  12. L. F. Petrov, “Interactive computational search strategy of periodic solutions in essentially nonlinear dynamics,” Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science, Ed. by M. G. Cojocaru (Springer International, Switzerland, 2015), pp. 355–360. doi 10.1007/978-3-319-12307-3_51

    Chapter  Google Scholar 

  13. A. Yu. Gornov, Computational Techniques for Solving Optimal Control Problems (Nauka, Novosibirsk, 2009) [in Russian].

    Google Scholar 

  14. A. B. Dorzhieva and L. F. Petrov, “Numerical study of limit cycles of a dynamical system using the OPTCONA software code,” Proceedings of Lyapunov Conference 2012 (2012), pp. 14.

    Google Scholar 

  15. B. P. Demidovich, Lectures on Mathematical Stability Theory (Nauka, Moscow, 1967) [in Russian].

    MATH  Google Scholar 

  16. M. J. Feigenbaum, “Universal behavior in nonlinear systems,” Los Alamos Sci. 1, 4–27 (1980).

    MathSciNet  Google Scholar 

  17. A. S. Antipin, “Saddle gradient feedback-controlled processes,” Autom. Remote Control 55 (2), 311–320 (1994).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Petrov.

Additional information

Original Russian Text © L.F. Petrov, 2018, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58, No. 3, pp. 403–413.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, L.F. Search for Periodic Solutions of Highly Nonlinear Dynamical Systems. Comput. Math. and Math. Phys. 58, 384–393 (2018). https://doi.org/10.1134/S0965542518030089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518030089

Keywords

Navigation