To the Synthesis of Optimal Control Systems

  • A. I. Kalinin


The linear-quadratic optimal control problem subject to linear terminal constraints is considered. An optimal feedback control that is linear in the state variables is constructed.


optimal control linear system quadratic performance index optimal synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Nauka, Moscow, 1983; Gordon and Breach, New York, 1986).Google Scholar
  2. 2.
    A. A. Fel’dbaum, Foundations of the Theory of Optimal Automatic Systems (Nauka, Moscow, 1966) [in Russian].Google Scholar
  3. 3.
    R. Kalman, “On the general theory of control systems,” in Proc. of the First Int. Congress on Automatic Control, London, 1960, pp. 481–493.Google Scholar
  4. 4.
    A. M. Letov, Mathematical Theory of Control Processes (Nauka, Moscow, 1981) [in Russian].Google Scholar
  5. 5.
    H. Kvakernaak and R. Sivan, Linear Optimal Control Systems (Wiley, New York, 1972; Mir, Moscow, 1977).Google Scholar
  6. 6.
    A. B. Kurzhanskii, “On the synthesis of controls based on actually available data,” Vestn. Mosk. Gos. Univ., Ser. 15, Vychisl. Mat. Kibern. Special Issue, 114–122 (2005).Google Scholar
  7. 7.
    R. Gabasov, F. M. Kirillova, and E. I. Poyasok, “Optimal Control of a Dynamic System with Multiple Uncertainty in the Initial State as Based on Imperfect Measurements of Input and Output Signals,” Comput. Math. Math. Phys. 52, 992–1008 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms, 2nd ed. (Springer, Cham, Switzerland, 2017).CrossRefzbMATHGoogle Scholar
  9. 9.
    R. Gabasov and F. M. Kirillova, The Qualitative Theory of Optimal Processes (Nauka, Moscow, 1971; Dekker, New York, 1976).zbMATHGoogle Scholar
  10. 10.
    B. Sh. Mordukhovich, “Existence of optimal controls,” in Itogi Nauki Tekh., Ser.: Modern Problems of Mathematics (VINITI, Moscow, 1976), Vol. 6, pp. 207–271.Google Scholar
  11. 11.
    R. Gabasov and F. M. Kirillova, Foundations of Dynamic Programming (Belarus. Gos. Univ., Minsk, 1975) [in Russian].zbMATHGoogle Scholar
  12. 12.
    A. I. Kalinin and L. I. Lavrinovich, “Application of the perturbation method for the minimization of an integral quadratic functional on the trajectories of a quasilinear system,” J. Comput. Syst. Sci. Int. 53, 149–158 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    N. N. Krasovskii, Theory of Motion Control (Nauka, Moscow, 1968) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Belarussian State UniversityMinskBelarus

Personalised recommendations