High-Order Multioperator Compact Schemes for Numerical Simulation of Unsteady Subsonic Airfoil Flow



On the basis of high-order schemes, the viscous gas flow over the NACA2212 airfoil is numerically simulated at a free-stream Mach number of 0.3 and Reynolds numbers ranging from 103 to 107. Flow regimes sequentially varying due to variations in the free-stream viscosity are considered. Vortex structures developing on the airfoil surface are investigated, and a physical interpretation of this phenomenon is given.


numerical simulation high-order compact schemes airfoil boundary layer separation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Mardsen, C. Bogey, and C. Bailly, “High-order curvilinear simulations of flows around non-Cartesian bodies,” J. Comput. Acoust. 13 (4), 731–748 (2005).CrossRefMATHGoogle Scholar
  2. 2.
    C. K. W. Tam and H. Ju, “Numerical simulation of the generation of airfoil tones at a moderate Reynolds number,” AIAA Paper, No. 2006-2502 (2006).Google Scholar
  3. 3.
    R. D. Sandberg, L. E. Jones, N. D. Sandham, and P. F. Joseph, “Direct numerical simulations of noise generated by airfoil trailing edges,” AIAA Paper, No. 2007-3469 (2007).Google Scholar
  4. 4.
    L. E. Jones and R. D. Sandberg, “Direct numerical simulations of noise generated by the flow over an airfoil with trailing edge serrations,” AIAA Paper, No. 2009-3195 (2009).Google Scholar
  5. 5.
    M. Riherd, S. Roy, D. Rizzetta, and M. Visbal, “Study of transient and unsteady effects of plasma actuation in transitional flow over an SD7003 airfoil,” AIAA Paper, No. 2011-1075 (2011).Google Scholar
  6. 6.
    I. Mary and P. Sagaut, “Large eddy simulation of flow around an airfoil,” AIAA Paper, No. 2001-2559 (2001).Google Scholar
  7. 7.
    E. Manoha, C. Herrero, P. Sagaut, and S. Redonnet, “Numerical prediction of airfoil aerodynamic noise,” AIAA Paper, No. 2002-2573 (2002).Google Scholar
  8. 8.
    P. E. Morgan and M. R. Visbal, “Large-eddy simulation of airfoil flows,” AIAA Paper, No. 2003-777 (2003).Google Scholar
  9. 9.
    S. R. Koh, K. W. Chang, and Y. J. Moon, “Turbulence trailing-edge noise at low Mach number,” AIAA Paper, No. 2005-2974 (2005).Google Scholar
  10. 10.
    A. A. Oberai, F. Roknaldin, and T. J. Hughes, “Computation of trailing-edge noise due to turbulent flow over an airfoil,” AIAA J. 40 (11), 2206–2216 (2002).CrossRefGoogle Scholar
  11. 11.
    X. Gloerfelt and T. Garrec, “Trailing edge noise from an isolated airfoil at a high Reynolds number,” AIAA Paper, No. 2009-3201 (2009).Google Scholar
  12. 12.
    A. D. Savel’ev, “Multioperator representation of composite compact schemes,” Comput. Math. Math. Phys. 54 (10), 1522–1535 (2014).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    O. Arias, O. Falcinelli, N. Fico, Jr., and S. Elaskar, “Finite volume simulation of a flow over a NACA0012 using Jameson, MacCormack, Shu, and TVD Esquemes,” Mec. Comput. 26, 3097–3116 (2007).Google Scholar
  14. 14.
    F. R. Menter, “Zonal two equation k-ω turbulence models for aerodynamic flows,” AIAA Paper, No. 93-2906 (1993).Google Scholar
  15. 15.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1987; Begell House, New York, 1996).MATHGoogle Scholar
  16. 16.
    T. J. Coacley, “Turbulence modeling methods for compressible Navier–Stokes equations,” AIPP Paper, No. 83-1693 (1983).Google Scholar
  17. 17.
    A. D. Savel’ev, “Practical comparison of two turbulent models,” Mat. Model. 21 (9), 108–120 (2009).MATHGoogle Scholar
  18. 18.
    A. D. Savel’ev, “Numerical simulation of acoustic radiation of a two-dimensional cavity in subsonic flow,” Uch. Zap. TsAGI 45 (1), 57–74 (2014).Google Scholar
  19. 19.
    J. L. Steger, “Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries,” AIAA J. 16, 676–685 (1978).CrossRefGoogle Scholar
  20. 20.
    R. B. Langtry and F. R. Menter, “Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes,” AIAA J. 47 (12), 2894–2906 (2009).CrossRefGoogle Scholar
  21. 21.
    V. V. Vlasenko and A. N. Morozov, “Algorithm for triggering laminar-turbulent transition in the numerical flow simulation based on the Reynolds equations,” Uch. Zap. TsAGI 42 (4), 49–63 (2011).Google Scholar
  22. 22.
    V. V. Vozhdaev, A. F. Kiselev, D. S. Sboev, L. L. Teperin, and S. L. Chernyshev, “Simulation of the laminarturbulent transition on the basis of the numerical solution of the nonstationary Navier–Stokes equations,” Uch. Zap. TsAGI 47 (3), 38–46 (2016).Google Scholar
  23. 23.
    J. Erdos and A. Pallone, “Shock-boundary layer interaction and flow separation,” in Proceedings of Heat Transfer and Fluid Mechanics Institute (Stanford Univ. Press, Stanford, CA, 1962), pp. 239–254.Google Scholar
  24. 24.
    G. N. Abramovich, Applied Gas Dynamics, 5th ed. (Nauka, Moscow, 1991), Part 1 [in Russian].Google Scholar
  25. 25.
    G. M. Bam-Zelikovich, “Computation of boundary layer separation,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 12, 68–85 (1954).Google Scholar
  26. 26.
    L. V. Gogish and G. Yu. Stepanov, Turbulent Separated Flows (Nauka, Moscow, 1979) [in Russian].MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,”Russian Academy of SciencesMoscowRussia

Personalised recommendations