Traveling-Wave Solutions of the Kolmogorov–Petrovskii–Piskunov Equation

  • S. V. Pikulin


We consider quasi-stationary solutions of a problem without initial conditions for the Kolmogorov–Petrovskii–Piskunov (KPP) equation, which is a quasilinear parabolic one arising in the modeling of certain reaction–diffusion processes in the theory of combustion, mathematical biology, and other areas of natural sciences. A new efficiently numerically implementable analytical representation is constructed for self-similar plane traveling-wave solutions of the KPP equation with a special right-hand side. Sufficient conditions for an auxiliary function involved in this representation to be analytical for all values of its argument, including the endpoints, are obtained. Numerical results are obtained for model examples.


Kolmogorov–Petrovskii–Piskunov equation generalized Fisher equation Abel’s equation of the second kind Fuchs–Kowalewski–Painlevé test self-similar solutions traveling waves intermediate asymptotic regime 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Kolmogorov, I. G. Petrovskii, and I. S. Piskunov, “A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem,” in Selected Works of A.N. Kolmogorov, Ed. by V. M. Tikhomirov (Kluwer Academic, 1991).Google Scholar
  2. 2.
    Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980; Plenum, New York, 1985).Google Scholar
  3. 3.
    Ya. B. Zel’dovich and D. A. Frank-Kamenetskii, “On the theory of homogeneous flame propagation,” Dokl. Akad. Nauk SSSR 19, 693–698 (1938).Google Scholar
  4. 4.
    Ya. B. Zel’dovich and D. A. Frank-Kamenetskii, “Theory of thermal flame propagation,” Zh. Fiz. Khim. 12 (1), 100–105 (1938).Google Scholar
  5. 5.
    Ya. B. Zel’dovich, “On the theory of flame propagation,” Zh. Fiz. Khim. 22 (1), 27–48 (1948).MathSciNetGoogle Scholar
  6. 6.
    J. Canosa, “Diffusion in nonlinear multiplicative media,” J. Math. Phys. 10 (10), 1862–1868 (1969).CrossRefGoogle Scholar
  7. 7.
    Yu. P. Raizer, “A high-frequency high-pressure gas flow discharge as a slow combustion process,” J. Appl. Mech. Tech. Phys. 9 (3), 239–243 (1968).CrossRefGoogle Scholar
  8. 8.
    F. V. Bunkin, V. I. Konov, A. M. Prokhorov, and V. B. Fedorov, “Laser spark in the “slow combustion” regime,” J. Exp. Theor. Phys. Lett. 9, 371–374 (1969).Google Scholar
  9. 9.
    A. C. Newell and J. A. Whitehead, “Finite bandwidth, finite amplitude convection,” J. Fluid Mech. 38, 279–303 (1969).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    L. A. Segel, “Distant side-walls cause slow amplitude modulation of cellular convection,” J. Fluid Mech. 38 (1), 203–224 (1969).CrossRefMATHGoogle Scholar
  11. 11.
    R. A. Fisher, “The wave of advance of advantageous genes,” Ann. Eug., No. 7, 355–369 (1937).CrossRefMATHGoogle Scholar
  12. 12.
    O. V. Kovalev and V. V. Vecherin, “Description of a new wave process in populations with reference to the introduction and spread of ambrosia leaf beetle Zygogramma suturalis F. (Coleoptera, Chrysomelidae),” Entomol. Obozr. 65 (1), 21–38 (1986).Google Scholar
  13. 13.
    S. Petrovskii and Li Bai-Lian, Exactly Solvable Models of Biological Invasion (Chapman and Hall/CRC, London, 2005).CrossRefMATHGoogle Scholar
  14. 14.
    A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol. 117 (4), 500–544 (1952).CrossRefGoogle Scholar
  15. 15.
    R. FitzHugh, “Mathematical models of threshold phenomena in the nerve membrane,” Bull. Math. Biophys. 17 (4), 257–278 (1955).CrossRefGoogle Scholar
  16. 16.
    R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membrane,” Biophys. J. 1 (6), 445–466 (1961).CrossRefGoogle Scholar
  17. 17.
    J. Nagumo, S. Arimoto, and S. Yoshizawa, “An active pulse transmission line simulating nerve axon,” Proc. IRE 50, 2061–2070 (1962).CrossRefGoogle Scholar
  18. 18.
    D. Noble, “A modification of the Hodgkin–Huxley equations applicable to Purkinje fiber action and pacemaker potentials,” J. Physiol. 160, 317–352 (1962).CrossRefGoogle Scholar
  19. 19.
    E. C. Zeeman, “Differential equations for the heartbeat and nerve impulse,” Towards Theor. Biol. 4, 8–67 (1972).Google Scholar
  20. 20.
    R. Aliev and A. Panfilov, “A simple two-variable model of cardiac excitation,” Chaos, Solitons Fractals 7 (3), 293–301 (1996).CrossRefGoogle Scholar
  21. 21.
    V. N. Biktashev, “A simplified model of propagation and dissipation of excitation fronts,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 12 (13), 3605–3619 (2003).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    A. M. Zhabotinskii, Concentration Self-Oscillations (Nauka, Moscow, 1974) [in Russian].Google Scholar
  23. 23.
    V. P. Maslov, V. G. Danilov, and K. A. Volosov, Mathematical Modeling of Heat and Mass Transfer Processes (Nauka, Moscow, 1987; Springer, Berlin, 1995).MATHGoogle Scholar
  24. 24.
    J. D. Murray, Mathematical Biology, Vol. 1: An Introduction, 3rd ed. (Springer, New York, 2004).CrossRefGoogle Scholar
  25. 25.
    J. E. Taylor, J. W. Cahn, and C. A. Handwerker, “Overview no. 98 I—geometric models of crystal growth,” Acta Metall. Mater. 40 (7), 1443–1474 (1992).CrossRefGoogle Scholar
  26. 26.
    G. I. Barenblatt and Ya. B. Zel’dovich, “Intermediate asymptotics in mathematical physics,” Russ. Math. Surv. 26 (2), 45–61 (1971).MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-Up in Quasilinear Parabolic Equations (Nauka, Moscow, 1987; Walter de Gruyter, Berlin, 1995).MATHGoogle Scholar
  28. 28.
    B. H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion Convection Reaction (Birkhäuser, Basel, 2004).CrossRefMATHGoogle Scholar
  29. 29.
    A. Volpert, V. Volpert, and V. Volpert, Traveling Wave Solutions of Parabolic Systems (Am. Math. Soc., Providence, R.I., 2000).MATHGoogle Scholar
  30. 30.
    V. Volpert and S. Petrovskii, “Reaction–diffusion waves in biology,” Phys. Life Rev. 6, 267–310 (2009).CrossRefGoogle Scholar
  31. 31.
    M. Ablowitz and A. Zeppetella, “Explicit solutions of Fisher’s equation for a special wave speed,” Bull. Math. Biol. 41 (6), 835–840 (1979).MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    R. M. Conte and M. Musette, The Painlevé Handbook (Springer Science + Business Media, Dordrecht, 2008).MATHGoogle Scholar
  33. 33.
    S. V. Pikulin, “On travelling-wave solutions of a nonlinear parabolic equation,” Vestn. Samar. Gos. Univ. Estestv. Ser., No. 6 (128), 110–116 (2015).Google Scholar
  34. 34.
    E. Kamke, Gewohnliche Differentialgleichungen (Akademie-Verlag, Leipzig, 1959).MATHGoogle Scholar
  35. 35.
    S. Lefschetz, Differential Equations: Geometric Theory (Interscience, New York, 1963).MATHGoogle Scholar
  36. 36.
    V. V. Golubev, Lectures on the Analytical Theory of Differential Equations (Gostekhizdat, Moscow, 1950) [in Russian].MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,”Russian Academy of SciencesMoscowRussia

Personalised recommendations