Advertisement

New External Estimate for the Reachable Set of a Nonlinear Multistep Dynamic System

  • A. V. Lotov
Article

Abstract

An approach is proposed for estimating the reachable set of a nonlinear multistep dynamic system by approximating the effective hull of this set. The approximation of the effective hull relies on local optimization of specially chosen functions of the system’s state. Methods using global optimization of such functions are briefly described. Approximation methods based on local optimization are considered as applied to the effective hull of a reachable set, and a statistical estimate for the quality of the effective hull approximation is constructed.

Keywords

nonlinear dynamic system reachable set effective hull approximation local optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. L. Chernousko, State Estimation for Dynamic Systems: The Ellipsoid Method (Nauka, Moscow, 1988) [in Russian].Google Scholar
  2. 2.
    F. L. Chernousko, State Estimation for Dynamic Systems (CRC, Boca Raton, 1994).MATHGoogle Scholar
  3. 3.
    A. B. Kurzhanski and I. Valyi, Ellipsoidal Calculus for Estimation and Control (Birkhäuser, Boston, 1996).MATHGoogle Scholar
  4. 4.
    A. V. Lotov, “A numerical method for constructing sets of attainability for linear controlled systems with phase constraints,” USSR Comput. Math. Math. Phys. 15 (1), 63–74 (1975).CrossRefMATHGoogle Scholar
  5. 5.
    A. V. Lotov, V. A. Bushenkov, G. K. Kamenev, and O. L. Chernykh, Computer and Search for Balanced Tradeoff: The Feasible Goals Method (Nauka, Moscow, 1997) [in Russian].MATHGoogle Scholar
  6. 6.
    A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev, Interactive Decision Maps: Approximation and Visualization of Pareto Frontier (Kluwer Academic, Boston, 2004).CrossRefMATHGoogle Scholar
  7. 7.
    A. V. Lotov, “Multicriteria optimization of convex dynamical systems,” Differ. Equations 45 (11), 1669–1680 (2009).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    E. K. Kostousova, “On polyhedral estimates for reachable sets of discrete-time systems with bilinear uncertainty,” Autom. Remote Control 72 (9), 1841–1851 (2011).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    D. L. Kondrat’ev and A. V. Lotov, “External estimates and construction of attainability sets for controlled systems,” USSR Comput. Math. Math. Phys. 30 (2), 93–97 (1990).CrossRefMATHGoogle Scholar
  10. 10.
    A. V. Lotov, “Method for constructing an external polyhedral estimate of the trajectory tube for a nonlinear dynamic system,” Dokl. Math. 95 (1), 95–98 (2017).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    G. K. Kamenev and D. L. Kondrat’ev, “One research technique for nonclosed nonlinear models,” Mat. Model., No. 3, 105–118 (1992).MATHGoogle Scholar
  12. 12.
    G. K. Kamenev, Optimal Adaptive Methods for Polyhedral Approximation of Convex Bodies (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2007) [in Russian].MATHGoogle Scholar
  13. 13.
    Yu. G. Evtushenko and M. A. Posypkin, “Effective hull of a set and its approximation,” Dokl. Math. 90 (3), 791–794 (2014).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    V. V. Podinovski and V. D. Noghin, Pareto Optimal Solutions of Multicriteria Problems (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  15. 15.
    A. V. Lotov and I. I. Pospelova, Multicriteria Decision Making Problems (Maks, Moscow, 2008) [in Russian].Google Scholar
  16. 16.
    Yu. G. Evtushenko and M. A. Posypkin, “Nonuniform covering method as applied to multicriteria optimization problems with guaranteed accuracy,” Comput. Math. Math. Phys. 53 (2), 144–157 (2013).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    R. Horst and P. M. Pardalos, Handbook on Global Optimization (Kluwer, Dordrecht, 1995).CrossRefMATHGoogle Scholar
  18. 18.
    D. Scholz, Deterministic Global Optimization (Springer, New York, 2012).CrossRefMATHGoogle Scholar
  19. 19.
    P. S. Krasnoshchekov, V. V. Morozov, and V. V. Fedorov, “Decomposition in design problems,” Izv. Akad. Nauk Ser. Tekh. Kibern., No. 2, 7–17 (1979).Google Scholar
  20. 20.
    P. S. Krasnoshchekov, V. V. Morozov, and N. M. Popov, Optimization in CAD (Maks, Moscow, 2008) [in Russian].Google Scholar
  21. 21.
    G. K. Kamenev, A. V. Lotov, and T. S. Maiskaya, “Iterative method for constructing coverings of the multidimensional unit sphere,” Comput. Math. Math. Phys. 53 (2), 131–143 (2013).MathSciNetCrossRefGoogle Scholar
  22. 22.
    A. V. Lotov, G. K. Kamenev, and V. E. Berezkin, “Approximation and visualization of the Pareto frontier for nonconvex multicriteria problems,” Dokl. Math. 66 (2), 260–262 (2002).MATHGoogle Scholar
  23. 23.
    V. E. Berezkin, G. K. Kamenev, and A. V. Lotov, “Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier,” Comput. Math. Math. Phys. 46 (11), 1918–1931 (2006).MathSciNetCrossRefGoogle Scholar
  24. 24.
    V. E. Berezkin, A. V. Lotov, and E. A. Lotova, “Study of hybrid methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems,” Comput. Math. Math. Phys. 54 (6), 919–930 (2014).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Yu. G. Evtushenko, Optimization and Methods of Fast Automatic Differentiation (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2013) [in Russian].Google Scholar
  26. 26.
    G. K. Kamenev, “Approximation of completely bounded sets by the deep holes method,” Comput. Math. Math. Phys. 41 (11), 1667–1675 (2001).MathSciNetMATHGoogle Scholar
  27. 27.
    V. E. Berezkin and G. K. Kamenev, “Convergence analysis of two-phase methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems,” Comput. Math. Math. Phys. 52 (6), 846–854 (2012).MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    G. K. Kamenev, “Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth–Pareto hull,” Comput. Math. Math. Phys. 53 (4), 375–385 (2013).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,”Russian Academy of SciencesMoscowRussia

Personalised recommendations