Skip to main content
Log in

New External Estimate for the Reachable Set of a Nonlinear Multistep Dynamic System

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An approach is proposed for estimating the reachable set of a nonlinear multistep dynamic system by approximating the effective hull of this set. The approximation of the effective hull relies on local optimization of specially chosen functions of the system’s state. Methods using global optimization of such functions are briefly described. Approximation methods based on local optimization are considered as applied to the effective hull of a reachable set, and a statistical estimate for the quality of the effective hull approximation is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. L. Chernousko, State Estimation for Dynamic Systems: The Ellipsoid Method (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  2. F. L. Chernousko, State Estimation for Dynamic Systems (CRC, Boca Raton, 1994).

    MATH  Google Scholar 

  3. A. B. Kurzhanski and I. Valyi, Ellipsoidal Calculus for Estimation and Control (Birkhäuser, Boston, 1996).

    MATH  Google Scholar 

  4. A. V. Lotov, “A numerical method for constructing sets of attainability for linear controlled systems with phase constraints,” USSR Comput. Math. Math. Phys. 15 (1), 63–74 (1975).

    Article  MATH  Google Scholar 

  5. A. V. Lotov, V. A. Bushenkov, G. K. Kamenev, and O. L. Chernykh, Computer and Search for Balanced Tradeoff: The Feasible Goals Method (Nauka, Moscow, 1997) [in Russian].

    MATH  Google Scholar 

  6. A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev, Interactive Decision Maps: Approximation and Visualization of Pareto Frontier (Kluwer Academic, Boston, 2004).

    Book  MATH  Google Scholar 

  7. A. V. Lotov, “Multicriteria optimization of convex dynamical systems,” Differ. Equations 45 (11), 1669–1680 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. K. Kostousova, “On polyhedral estimates for reachable sets of discrete-time systems with bilinear uncertainty,” Autom. Remote Control 72 (9), 1841–1851 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. D. L. Kondrat’ev and A. V. Lotov, “External estimates and construction of attainability sets for controlled systems,” USSR Comput. Math. Math. Phys. 30 (2), 93–97 (1990).

    Article  MATH  Google Scholar 

  10. A. V. Lotov, “Method for constructing an external polyhedral estimate of the trajectory tube for a nonlinear dynamic system,” Dokl. Math. 95 (1), 95–98 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. K. Kamenev and D. L. Kondrat’ev, “One research technique for nonclosed nonlinear models,” Mat. Model., No. 3, 105–118 (1992).

    MATH  Google Scholar 

  12. G. K. Kamenev, Optimal Adaptive Methods for Polyhedral Approximation of Convex Bodies (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  13. Yu. G. Evtushenko and M. A. Posypkin, “Effective hull of a set and its approximation,” Dokl. Math. 90 (3), 791–794 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  14. V. V. Podinovski and V. D. Noghin, Pareto Optimal Solutions of Multicriteria Problems (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  15. A. V. Lotov and I. I. Pospelova, Multicriteria Decision Making Problems (Maks, Moscow, 2008) [in Russian].

    Google Scholar 

  16. Yu. G. Evtushenko and M. A. Posypkin, “Nonuniform covering method as applied to multicriteria optimization problems with guaranteed accuracy,” Comput. Math. Math. Phys. 53 (2), 144–157 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Horst and P. M. Pardalos, Handbook on Global Optimization (Kluwer, Dordrecht, 1995).

    Book  MATH  Google Scholar 

  18. D. Scholz, Deterministic Global Optimization (Springer, New York, 2012).

    Book  MATH  Google Scholar 

  19. P. S. Krasnoshchekov, V. V. Morozov, and V. V. Fedorov, “Decomposition in design problems,” Izv. Akad. Nauk Ser. Tekh. Kibern., No. 2, 7–17 (1979).

    Google Scholar 

  20. P. S. Krasnoshchekov, V. V. Morozov, and N. M. Popov, Optimization in CAD (Maks, Moscow, 2008) [in Russian].

    Google Scholar 

  21. G. K. Kamenev, A. V. Lotov, and T. S. Maiskaya, “Iterative method for constructing coverings of the multidimensional unit sphere,” Comput. Math. Math. Phys. 53 (2), 131–143 (2013).

    Article  MathSciNet  Google Scholar 

  22. A. V. Lotov, G. K. Kamenev, and V. E. Berezkin, “Approximation and visualization of the Pareto frontier for nonconvex multicriteria problems,” Dokl. Math. 66 (2), 260–262 (2002).

    MATH  Google Scholar 

  23. V. E. Berezkin, G. K. Kamenev, and A. V. Lotov, “Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier,” Comput. Math. Math. Phys. 46 (11), 1918–1931 (2006).

    Article  MathSciNet  Google Scholar 

  24. V. E. Berezkin, A. V. Lotov, and E. A. Lotova, “Study of hybrid methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems,” Comput. Math. Math. Phys. 54 (6), 919–930 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu. G. Evtushenko, Optimization and Methods of Fast Automatic Differentiation (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2013) [in Russian].

    Google Scholar 

  26. G. K. Kamenev, “Approximation of completely bounded sets by the deep holes method,” Comput. Math. Math. Phys. 41 (11), 1667–1675 (2001).

    MathSciNet  MATH  Google Scholar 

  27. V. E. Berezkin and G. K. Kamenev, “Convergence analysis of two-phase methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems,” Comput. Math. Math. Phys. 52 (6), 846–854 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  28. G. K. Kamenev, “Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth–Pareto hull,” Comput. Math. Math. Phys. 53 (4), 375–385 (2013).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lotov.

Additional information

Dedicated to the 100th birthday of Academician N.N. Moiseev

Original Russian Text © A.V. Lotov, 2018, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58, No. 2, pp. 209–219.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotov, A.V. New External Estimate for the Reachable Set of a Nonlinear Multistep Dynamic System. Comput. Math. and Math. Phys. 58, 196–206 (2018). https://doi.org/10.1134/S0965542518020082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518020082

Keywords

Navigation