Computational Efficiency of the Simplex Embedding Method in Convex Nondifferentiable Optimization

  • A. V. Kolosnitsyn


The simplex embedding method for solving convex nondifferentiable optimization problems is considered. A description of modifications of this method based on a shift of the cutting plane intended for cutting off the maximum number of simplex vertices is given. These modification speed up the problem solution. A numerical comparison of the efficiency of the proposed modifications based on the numerical solution of benchmark convex nondifferentiable optimization problems is presented.


centered cutting method modified simplex embedding method convex nondifferentiable optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Lemarechal, “Lagrangian relaxation,” in Computational Combinatorial Optimization, Ed. by M. Junger and D. Naddef (Springer, Berlin, 2001), Vol. 2241 of Lecture Notes in Computer Science, pp. 112–156.CrossRefGoogle Scholar
  2. 2.
    N. Z. Shor, “Application of the gradient descent method for solving the network transportation problem,” in Proc. of the Workshop on Theoretical and Applied Cybernetics and Operations Research (Inst. Kibernetiki Akad Nauk USSR, Kiev, 1962), No. 1, pp. 9–17.Google Scholar
  3. 3.
    I. I. Eremin, “An iterative method for Chebyshev approximations of inconsistent systems of linear inequalities,” Dokl. Akad. Nauk SSSR 143, 1254–1256 (1962).MathSciNetGoogle Scholar
  4. 4.
    I. I. Eremin, “A generalization of the Motzkin–Agmon relaxation method,” Usp. Mat. Nauk 20 (2), 183–187 (1965).MATHGoogle Scholar
  5. 5.
    S. Agmon, “The relaxation method for linear inequalities,” Canad. J. Math. 6 (1), 382–392 (1954).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    T. Motzkin and I. Schoenberg, “The relaxation method for linear inequalities,” Canad. J. Math. 6 (1), 393–404 (1954).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    M. Held and R. M. Karp, “The traveling-salesman problem and minimum spanning trees: Part II,” Math. Program. 1 (1), 6–25 (1971).CrossRefMATHGoogle Scholar
  8. 8.
    V. F. Dem’yanov and V. N. Malozemov, “On the theory of minimax problems,” Usp. Mat. Nauk 26 (3), 53–104 (1971).MathSciNetGoogle Scholar
  9. 9.
    B. T. Polyak, “Mininization of nonsmooth functionals,” Zh. Vychisl. Mat. Mat. Fiz. 9, 509–521 (1969).Google Scholar
  10. 10.
    B. T. Polyak, “A generic method for solving extremum value problems,” Dokl. Akad. Nauk SSSR 174, 33–36 (1967).MathSciNetGoogle Scholar
  11. 11.
    N. Z. Shor and P. R. Gamburd, “Certain issues concerning the convergence of the generalized gradient descent,” Kibernetika, No. 6, 82–84 (1971).MATHGoogle Scholar
  12. 12.
    N. Z. Shor, Methods for the Minimization of Nondifferentiable Functions and Their Applications (Nakova dumka, Kiev, 1979) [in Russian].MATHGoogle Scholar
  13. 13.
    N. Z. Shor, “On the convergence rate of the generalized gradient descent,” Kibernetika 4 (3), 98–99 (1968).Google Scholar
  14. 14.
    B. T. Polyak, Introduction to Optimization (Optimization Software, New York, 1987; Nauka, Moscow, 1983).MATHGoogle Scholar
  15. 15.
    N. Z. Shor and N. G. Zhurbenko, “A minimization method using a space dilatation in the direction of two consecutive gradients,” Kibernetika, No. 3, 51–59 (1971).MATHGoogle Scholar
  16. 16.
    D. B. Yudin and A. S. Nemirovskii, “Informational complexity and efficient methods for solving convex extremum value problems,” Ekon. Mat. Metody, No. 2, 357–369 (1976).MATHGoogle Scholar
  17. 17.
    N. Z. Shor, “A cutting method with with the dilatation of space for solving convex programming problems,” Kibernetika, No. 1, 94–95 (1977).Google Scholar
  18. 18.
    I. I. Konnov, “A conjugate subgradient method for the minimization of functionals,” Issled. Prikl. Mat., No. 12, 59–62 (1984).Google Scholar
  19. 19.
    Ph. Wolfe, “A method of conjugate subgradients for minimizing nondifferentiable functions,” in Nondifferentiable Optimization. Mathematical Programming Studies (Springer, Berlin, 1975), Vol. 3, pp. 145–173.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Y. H. Dai, “Convergence of conjugate gradient methods with constant stepsizes,” Optim. Meth. & Software 26, 895–909 (2011).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    E. A. Nurminskii and D. Tien, Method of conjugate subgradients with constrainеd memory, Autom. Remote Control 75, 646–656 (2014).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    E. W. Cheney and A. A. Goldstein, “Newton’s method for convex programming and Tchebycheff approximation,” Numer. Math. 1, 253–268 (1959).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    J. E. Kelley, “The cutting plane method for solving convex programs,” J. SIAM 8, 703–712 (1960).MathSciNetMATHGoogle Scholar
  24. 24.
    A. Bagirov, N. Karmitsa, and M. M. Makela, Introduction to Nonsmooth Optimization. Theory, Practice and Software (Springer, Switzerland, 2014).MATHGoogle Scholar
  25. 25.
    J. F. Bonnans, J. C. Gilbert, C. Lemarechal, and C. A. Sagastizaabal, Numerical Optimization. Theoretical and Practical Aspects, 2nd ed. (Springer, Berlin, 2006).Google Scholar
  26. 26.
    S. M. Robinson, “Linear convergence of epsilon-subgradient descent methods for a class of convex functions,” Math. Program. 86, 41–50 (1999).MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    H. Schramm and J. Zowe, “A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results,” SIAM J. Optim. 2 (1), 121–152 (1992).MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    M. Minoux, Mathematical Programming: Theory and Algorithms (Wiley, Chichester, 1986; Nauka, Moscow, 1990).MATHGoogle Scholar
  29. 29.
    Yu. E. Nesterov, Introduction into Convex Optimization (MTsNMO, Moscow, 2010) [in Russian].Google Scholar
  30. 30.
    I. A. Aleksandrov, E. G. Antsiferov, and V. P. Bulatov, “The methods of centered cuttings in convex programming,” Preprint of the Siberian Energy Systems Institute, Siberian Branch Russian Academy of Sciences, 1983.Google Scholar
  31. 31.
    E. V. Apekina and O. V. Khamisov, “A modified simplex immersions method with simultaneous introduction of several intersecting planes,” Izv. Vyssh. Uchebn. Zaved., No. 3, 16–24 (1997).MATHGoogle Scholar
  32. 32.
    A. V. Kolosnitsyn, “Application of the modified simplex embedding method for solving a special class of xonvex nondifferentiable optimization problems,” Izv. Irkutsk Gos. Univ., Ser. Mat. 54–68 (2015).Google Scholar
  33. 33.
    E. A. Nurminskii, Numerical Convex Optimization Methods (Nauka, Moscow, 1991) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Melentiev Energy Systems InstituteSiberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations