Skip to main content
Log in

Computational Efficiency of the Simplex Embedding Method in Convex Nondifferentiable Optimization

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The simplex embedding method for solving convex nondifferentiable optimization problems is considered. A description of modifications of this method based on a shift of the cutting plane intended for cutting off the maximum number of simplex vertices is given. These modification speed up the problem solution. A numerical comparison of the efficiency of the proposed modifications based on the numerical solution of benchmark convex nondifferentiable optimization problems is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lemarechal, “Lagrangian relaxation,” in Computational Combinatorial Optimization, Ed. by M. Junger and D. Naddef (Springer, Berlin, 2001), Vol. 2241 of Lecture Notes in Computer Science, pp. 112–156.

    Chapter  Google Scholar 

  2. N. Z. Shor, “Application of the gradient descent method for solving the network transportation problem,” in Proc. of the Workshop on Theoretical and Applied Cybernetics and Operations Research (Inst. Kibernetiki Akad Nauk USSR, Kiev, 1962), No. 1, pp. 9–17.

    Google Scholar 

  3. I. I. Eremin, “An iterative method for Chebyshev approximations of inconsistent systems of linear inequalities,” Dokl. Akad. Nauk SSSR 143, 1254–1256 (1962).

    MathSciNet  Google Scholar 

  4. I. I. Eremin, “A generalization of the Motzkin–Agmon relaxation method,” Usp. Mat. Nauk 20 (2), 183–187 (1965).

    MATH  Google Scholar 

  5. S. Agmon, “The relaxation method for linear inequalities,” Canad. J. Math. 6 (1), 382–392 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Motzkin and I. Schoenberg, “The relaxation method for linear inequalities,” Canad. J. Math. 6 (1), 393–404 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Held and R. M. Karp, “The traveling-salesman problem and minimum spanning trees: Part II,” Math. Program. 1 (1), 6–25 (1971).

    Article  MATH  Google Scholar 

  8. V. F. Dem’yanov and V. N. Malozemov, “On the theory of minimax problems,” Usp. Mat. Nauk 26 (3), 53–104 (1971).

    MathSciNet  Google Scholar 

  9. B. T. Polyak, “Mininization of nonsmooth functionals,” Zh. Vychisl. Mat. Mat. Fiz. 9, 509–521 (1969).

    Google Scholar 

  10. B. T. Polyak, “A generic method for solving extremum value problems,” Dokl. Akad. Nauk SSSR 174, 33–36 (1967).

    MathSciNet  Google Scholar 

  11. N. Z. Shor and P. R. Gamburd, “Certain issues concerning the convergence of the generalized gradient descent,” Kibernetika, No. 6, 82–84 (1971).

    MATH  Google Scholar 

  12. N. Z. Shor, Methods for the Minimization of Nondifferentiable Functions and Their Applications (Nakova dumka, Kiev, 1979) [in Russian].

    MATH  Google Scholar 

  13. N. Z. Shor, “On the convergence rate of the generalized gradient descent,” Kibernetika 4 (3), 98–99 (1968).

    Google Scholar 

  14. B. T. Polyak, Introduction to Optimization (Optimization Software, New York, 1987; Nauka, Moscow, 1983).

    MATH  Google Scholar 

  15. N. Z. Shor and N. G. Zhurbenko, “A minimization method using a space dilatation in the direction of two consecutive gradients,” Kibernetika, No. 3, 51–59 (1971).

    MATH  Google Scholar 

  16. D. B. Yudin and A. S. Nemirovskii, “Informational complexity and efficient methods for solving convex extremum value problems,” Ekon. Mat. Metody, No. 2, 357–369 (1976).

    MATH  Google Scholar 

  17. N. Z. Shor, “A cutting method with with the dilatation of space for solving convex programming problems,” Kibernetika, No. 1, 94–95 (1977).

    Google Scholar 

  18. I. I. Konnov, “A conjugate subgradient method for the minimization of functionals,” Issled. Prikl. Mat., No. 12, 59–62 (1984).

    Google Scholar 

  19. Ph. Wolfe, “A method of conjugate subgradients for minimizing nondifferentiable functions,” in Nondifferentiable Optimization. Mathematical Programming Studies (Springer, Berlin, 1975), Vol. 3, pp. 145–173.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. H. Dai, “Convergence of conjugate gradient methods with constant stepsizes,” Optim. Meth. & Software 26, 895–909 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. A. Nurminskii and D. Tien, Method of conjugate subgradients with constrainеd memory, Autom. Remote Control 75, 646–656 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  22. E. W. Cheney and A. A. Goldstein, “Newton’s method for convex programming and Tchebycheff approximation,” Numer. Math. 1, 253–268 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. E. Kelley, “The cutting plane method for solving convex programs,” J. SIAM 8, 703–712 (1960).

    MathSciNet  MATH  Google Scholar 

  24. A. Bagirov, N. Karmitsa, and M. M. Makela, Introduction to Nonsmooth Optimization. Theory, Practice and Software (Springer, Switzerland, 2014).

    MATH  Google Scholar 

  25. J. F. Bonnans, J. C. Gilbert, C. Lemarechal, and C. A. Sagastizaabal, Numerical Optimization. Theoretical and Practical Aspects, 2nd ed. (Springer, Berlin, 2006).

    Google Scholar 

  26. S. M. Robinson, “Linear convergence of epsilon-subgradient descent methods for a class of convex functions,” Math. Program. 86, 41–50 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Schramm and J. Zowe, “A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results,” SIAM J. Optim. 2 (1), 121–152 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Minoux, Mathematical Programming: Theory and Algorithms (Wiley, Chichester, 1986; Nauka, Moscow, 1990).

    MATH  Google Scholar 

  29. Yu. E. Nesterov, Introduction into Convex Optimization (MTsNMO, Moscow, 2010) [in Russian].

    Google Scholar 

  30. I. A. Aleksandrov, E. G. Antsiferov, and V. P. Bulatov, “The methods of centered cuttings in convex programming,” Preprint of the Siberian Energy Systems Institute, Siberian Branch Russian Academy of Sciences, 1983.

    Google Scholar 

  31. E. V. Apekina and O. V. Khamisov, “A modified simplex immersions method with simultaneous introduction of several intersecting planes,” Izv. Vyssh. Uchebn. Zaved., No. 3, 16–24 (1997).

    MATH  Google Scholar 

  32. A. V. Kolosnitsyn, “Application of the modified simplex embedding method for solving a special class of xonvex nondifferentiable optimization problems,” Izv. Irkutsk Gos. Univ., Ser. Mat. 54–68 (2015).

    Google Scholar 

  33. E. A. Nurminskii, Numerical Convex Optimization Methods (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kolosnitsyn.

Additional information

Dedicated to the 100th birthday of Academician N.N. Moiseev

Original Russian Text © A.V. Kolosnitsyn, 2018, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58, No. 2, pp. 228–236.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolosnitsyn, A.V. Computational Efficiency of the Simplex Embedding Method in Convex Nondifferentiable Optimization. Comput. Math. and Math. Phys. 58, 215–222 (2018). https://doi.org/10.1134/S0965542518020070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518020070

Keywords

Navigation