Advertisement

Geometric Theory of Reduction of Nonlinear Control Systems

  • V. I. Elkin
Article
  • 28 Downloads

Abstract

The foundations of a differential geometric theory of nonlinear control systems are described on the basis of categorical concepts (isomorphism, factorization, restrictions) by analogy with classical mathematical theories (of linear spaces, groups, etc.).

Keywords

morphisms isomorphisms classification canonical forms factorization factor systems aggregated systems restriction subsystems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Bucur and A. Deleanu, Introduction to the Theory of Categories and Functors (Wiley, New York, 1968; Mir, Moscow, 1973).MATHGoogle Scholar
  2. 2.
    Yu. N. Pavlovskii, “The group properties of controlled dynamic systems and phase organizational structures,” USSR Comput. Math. Math. Phys. 14 (4), 43–53 (1974); 14 (5), 10–19 (1974).CrossRefGoogle Scholar
  3. 3.
    V. I. Elkin, Reduction of Nonlinear Control Systems: Decomposition and Invariance under Perturbations (Fazis, Moscow, 2003) [in Russian].Google Scholar
  4. 4.
    V. I. Elkin, Reduction of Nonlinear Control Systems: Symmetries and Classification (Fazis, Moscow, 2006) [in Russian].Google Scholar
  5. 5.
    V. I. Elkin, “On a classification of affine control systems with a state space of dimension n < 4,” Dokl. Akad. Nauk SSSR 302 (1), 18–20 (1988).MathSciNetGoogle Scholar
  6. 6.
    P. K. Rashevskii, Geometric Theory of Partial Differential Equations (Gostekhizdat, Moscow, 1947) [in Russian].Google Scholar
  7. 7.
    V. I. Elkin, “On a classification of four-dimensional affine control systems,” Dokl. Math. 90 (1), 483–484 (2014).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,”Russian Academy of SciencesMoscowRussia

Personalised recommendations