Parabolic equations with unknown time-dependent coefficients

Article
  • 39 Downloads

Abstract

The solvability of inverse problems of finding the coefficients of a parabolic equation together with solving this equation is studied. In these problems, certain additional conditions on the boundary are used as overdetermination conditions. Existence and uniqueness theorems for regular solutions of such problems are proven.

Keywords

parabolic equations nonlinear inverse problems unknown coefficients boundary overdetermination regular solutions existence uniqueness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics (Marcel Dekker, New York, 1999).MATHGoogle Scholar
  2. 2.
    S. I. Kabanikhin, Inverse and Ill-Posed Problems (Sibirskoe Knizhnoe, Novosibirsk, 2009) [in Russian].MATHGoogle Scholar
  3. 3.
    J. R. Cannon and Y. Lin, “Determination of a parameter p(t) in some quasi-linear parabolic differential equations,” Inverse Probl. 4, 35–45 (1988).CrossRefMATHGoogle Scholar
  4. 4.
    V. L. Kamynin and E. Franchini, “An inverse problem for a higher-order parabolic equation,” Math. Notes 64 (5), 590–599 (1998).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    V. L. Kamynin and M. Saroldi, “Nonlinear inverse problem for a high-order parabolic equation,” Comput. Math. Math. Phys. 38 (10), 1615–1623 (1998).MathSciNetMATHGoogle Scholar
  6. 6.
    B. S. Ablabekov, Inverse Problems for Pseudoparabolic Equations (Ilim, Bishkek, 2001) [in Russian].Google Scholar
  7. 7.
    Yu. E. Anikonov, Inverse Problems for Kinetic and Other Evolution Equations (VSP, Utrecht, 2001).CrossRefGoogle Scholar
  8. 8.
    Yu. Ya. Belov, Inverse Problems for Partial Differential Equations (VSP, Utrecht, 2002).CrossRefMATHGoogle Scholar
  9. 9.
    M. Ivanchov, Inverse Problems for Equations of Parabolic Type (VNTL, Lviv, 2003).MATHGoogle Scholar
  10. 10.
    A. I. Kozhanov, “Parabolic equations with an unknown time-dependent coefficient,” Comput. Math. Math. Phys. 45 (12), 2085–2101 (2005).MathSciNetMATHGoogle Scholar
  11. 11.
    A. I. Kozhanov, “Inverse problems for an equation with multiple characteristics: The case of a time-dependent unknown coefficient,” Dokl. Adyg. (Cherkes.) Mezhdunar. Akad. Nauk 8 (1), 38–49 (2005).Google Scholar
  12. 12.
    I. R. Valitov and A. I. Kozhanov, “Inverse problems for hyperbolic equations: The case of time-dependent unknown coefficients,” Vestn. Novosib. Gos. Univ. Ser. Mat. Mekh. Inf. 6 (1), 3–18 (2006).MATHGoogle Scholar
  13. 13.
    A. I. Kozhanov, “On the solvability of the inverse problem of finding the leading coefficient in a composite-type equation,” Vestn. Vestn. Yuzhno-Ural. Gos. Univ. Mat. Model. Program. 1 (15), 27–36 (2008).MATHGoogle Scholar
  14. 14.
    A. I. Kozhanov, “On the solvability of inverse coefficient problems for composite equations,” Vestn. Novosib. Gos. Univ. Ser. Mat. Mekh. Inf. 8 (3), 81–99 (2008).MathSciNetMATHGoogle Scholar
  15. 15.
    A. I. Kozhanov, “On the solvability of inverse coefficient problems for some Sobolev-type equations,” Nauchn. Vedom. Belgorod. Univ. 18 (5), 88–97 (2010).Google Scholar
  16. 16.
    S. S. Pavlov, “Nonlinear inverse problems for multidimensional hyperbolic equations with integral overdetermination,” Mat. Zametki Yaroslav. Gos. Univ. 19 (2), 128–154 (2011).MathSciNetMATHGoogle Scholar
  17. 17.
    L. A. Telesheva, “On the solvability of an inverse problem for a high-order parabolic equation with an unknown coefficient multiplying the time derivative,” Mat. Zametki Yaroslav. Gos. Univ. 18 (2), 180–201 (2011).MATHGoogle Scholar
  18. 18.
    A. I. Kozhanov, “On the solvability of some nonlocal and related inverse problems for parabolic equations,” Mat. Zametki Yaroslav. Gos. Univ. 18 (2), 64–78 (2011).MATHGoogle Scholar
  19. 19.
    M. Slodička, “Determination of a solely time-dependent source in a semilinear parabolic problem by means of boundary measurements,” J. Comput. Appl. Math. 289, 433–440 (2015).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    R. R. Safiullova, “Inverse problem for a second-order hyperbolic equation with an unknown time-dependent coefficient,” Vestn. Yuzhno-Ural. Gos. Univ. Mat. Model. Program. 6 (4), 73–86 (2013).MATHGoogle Scholar
  21. 21.
    G. V. Namsaraeva, “On the solvability of inverse problems for pseudoparabolic equations,” Mat. Zametki Yaroslav. Gos. Univ. 20 (2), 111–137 (2013).MATHGoogle Scholar
  22. 22.
    Ya. T. Megraliev, “Inverse problem for the Boussinesq–Love equation with an additional integral condition,” Sib. Zh. Ind. Mat. 16 (1), 75–83 (2013).MathSciNetMATHGoogle Scholar
  23. 23.
    S. G. Pyatkov and E. I. Safonov, “Determination of the source function in mathematical models of convection–diffusion,” Mat. Zametki Severo-Vost. Fed. Univ. 21 (2), 117–130 (2014).MATHGoogle Scholar
  24. 24.
    S. N. Shergin and S. G. Pyatkov, “On some classes of inverse problems for pseudoparabolic equations,” Mat. Zametki Severo-Vost. Fed. Univ. 21 (2), 106–116 (2014).MATHGoogle Scholar
  25. 25.
    M. T. Dzhenaliev, On the Theory of Linear Boundary Value Problems for Loaded Differential Equations (Inst. Teor. Prikl. Mat., Almaty, 1995) [in Russian].MATHGoogle Scholar
  26. 26.
    A. M. Nakhushev, Loaded Equations and Their Applications (Nauka, Moscow, 2012) [in Russian].MATHGoogle Scholar
  27. 27.
    V. S. Vladimirov, Equations of Mathematical Physics (Marcel Dekker, New York, 1971; Nauka, Moscow, 1976).MATHGoogle Scholar
  28. 28.
    O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations (Nauka, Moscow, 1973; Academic, New York, 1987).Google Scholar
  29. 29.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type (Nauka, Moscow, 1967; Am. Math. Soc., Providence, R.I., 1968).MATHGoogle Scholar
  30. 30.
    V. A. Trenogin, Functional Analysis (Nauka, Moscow, 1980) [in Russian].MATHGoogle Scholar
  31. 31.
    S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics (Am. Math. Soc., Providence, R.I., 1963; Nauka, Moscow, 1988).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations