Advertisement

Application of numerical schemes with singling out the boundary layer for the computation of turbulent flows using eddy-resolving approaches on unstructured grids

  • A. S. Kozelkov
  • O. L. Krutyakova
  • V. V. Kurulin
  • S. V. Lashkin
  • E. S. Tyatyushkina
Article
  • 27 Downloads

Abstract

The use of eddy-resolving approaches to solving problems on arbitrary unstructured grids is investigated. The applications of such approaches requires the use of low dissipation numerical schemes, which can lead to numerical oscillations of the solution on unstructured grids. Numerical oscillations typically occur in domains with large gradients of velocities, in particular, in the near-wall layer. It is proposed to single out the boundary layer and use a numerical scheme with increased numerical dissipation in it. The algorithm for singling out the boundary layer uses a switching function to change the parameters of the numerical scheme. This algorithm is formulated based on the BCD scheme from the family NVD. Its validity and advantages are investigated using the zonal RANS–LES approach for solving some problems of turbulent flow of incompressible fluids.

Keywords

turbulence computational fluid dynamics numerical scheme dissipativity singling out the boundary layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. N. Volkov and V. N. Emel’yanov, Simulation of Large-Scale Eddies in the Computation of Turbulent Flows (Fizmatlit, Moscow, 2008) [in Russian].MATHGoogle Scholar
  2. 2.
    A. Yu. Snegirev, High-Performance Computations in Physics: Numerical Simulation of Turbulent Flows (Plitekhnicheskii Univ., St. Petersburg, 2009) [in Russian].Google Scholar
  3. 3.
    A. Travin, M. Shur, M. Strelets, and P. R. Spalart, “Detached-eddy simulations past a circular cylinder,” Flow. Turb. Comb. 63, 293–313 (2000).CrossRefMATHGoogle Scholar
  4. 4.
    N. Jarrin, R. Prosser, J. Uribe, et al. “Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a Synthetic-Eddy Method,” Int. J. Heat Fluid Flow 30, 435–442 (2009).CrossRefGoogle Scholar
  5. 5.
    D. Yu. Adamiyan, “An efficient method of synthetic turbulence generation at LES inflow in zonal RANS–LES approaches to computation of turbulent flows,” Mat. Model. 23 (7), 3–19 (2011).MathSciNetGoogle Scholar
  6. 6.
    A. S. Kozelkov, V. V. Kurulin, E. S. Tyatyushkina, O. L. Puchkova, and S. V. Lashkin, “Investigation of schemes for the discretization of the convective flow of viscous incompressible fluid by the detached eddy method,” Fund. Res., No. 10, 13 (2013).Google Scholar
  7. 7.
    A. S. Kozelkov, V. V. Kurulin, E. S. Tyatyushkina, and O. L. Puchkova, “Application of the detached eddy simulation model for viscous incompressible turbulent flow simulations on unstructured grids,” Mat. Model. 26 (8), 81–96 (2014).MATHGoogle Scholar
  8. 8.
    H. Jasak, H. G. Weller, and A. D. Gosman, “High resolution NVD differencing scheme for arbitrarily unstructured meshes,” Int. J. Numer. Meth. Fluids 31, 431–449 (1999).CrossRefMATHGoogle Scholar
  9. 9.
    H. Jasak, “Error analysis and estimation for the finite volume method with applications to fluid flows,” Thesis submitted for the degree of doctor, Department of Mech. Eng. Imperial College of Sci. 1996.Google Scholar
  10. 10.
    B. P. Leonard, “The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection,” Comput. Meth. Appl. Mech. Eng. 88, 17–74 (1991).CrossRefMATHGoogle Scholar
  11. 11.
    A. S. Kozelkov and V. V. Kurulin, “Eddy-resolving numerical scheme for simulation of turbulent incompressible flows,” Comput. Math. Math. Phys. 55, 135–146 (2015).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. S. Kozelkov, R. N. Zhuchkov, A. A. Utkina, and K. B. Volodchenkova, “Simulation of turbulent flows on hybrid grids using high-order schemes,” Vopr. Atomn. Nauki Tekh. (VANT), Ser. Math. Mat. Model. Fiz. Proc., No. 3, 18–31 (2014).Google Scholar
  13. 13.
    M. Strelets, “Detached eddy simulation of massively separated flows,” AIAA Paper 2001-087939, 39th Aerospace Sci. Meeting and Exhibition, Reno, NV, 2001.CrossRefGoogle Scholar
  14. 14.
    H. Schlichting, Boundary Layer Theory, 6th ed. (McGraw-Hill, New York, 1968; Nauka, Moscow, 1974).MATHGoogle Scholar
  15. 15.
    K. N. Volkov and V. N. Emel’yanov, Flows and Heat Exchange in Channels and Rotating Cavities (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar
  16. 16.
    K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. G. Karpenko, A. S. Kozelkov, and I. V. Teterina, Methods for Speeding Up Fluid Dynamics Computations on Unstructured Grids (Fizmatlit, Moscow, 2013) [in Russian].Google Scholar
  17. 17.
    A. S. Kozelkov, Yu. N. Deryugin, S. V. Lakshin, D. P. Silaev, P.G. Simonov, and E. S. Tyatyushkina, “Implementation of the method for the calculation of a viscous incompressible fluid using the multigrid method based on the SIMPLE algorithm in the LOGOS software package,” Vopr. Atomn. Nauki Tekh. (VANT), Ser. Math. Mat. Model. Fiz. Proc., No. 4, 44–56 (2013).Google Scholar
  18. 18.
    V. B. Betelin, R. M. Shagaliev, S. V. Aksenov, I. M. Belyakov, Yu. N. Deryuguin, D. A. Korchazhkin, A. S. Kozelkov, V. F. Nikitin, A. V. Sarazov, and D. K. Zelenskiy, “Mathematical simulation of hydrogen-oxygen combustion in rocket engines using LOGOS code,” Acta Astronaut. 96, 53–64 (2014).CrossRefGoogle Scholar
  19. 19.
    A. S. Kozelkov, V. V. Kurulin, O. L. Puchkova, and S. V. Lashkin, “Simulation of turbulent flows using the algebraic Reynolds stress model with universal near-wall functions,” Vychisl. Mekh. Sploshnykh Sred 7 (1), 40–51 (2014).Google Scholar
  20. 20.
    E. M. Cherry, C. J. Elkins, and J. K. Eaton, “Geometric sensitivity of 3-D separated flows,” in Proc. of the 5th Int. Symp. on Turbulence and Shear Flow Phenomena, TSFP5, Munich, 2007, pp. 27–29.Google Scholar
  21. 21.
    F. R. Menter, A. V. Garbaruk, and Y. Egorov, “Explicit algebraic Reynolds stress models for anisotropic wallbounded flows,” in Proc. of the 3rd. Europ. Conf. on Aero-Space Sci. (EUCASS), Versailles, 2009.Google Scholar
  22. 22.
    N. Fukushima, K. Fukagata, N. Kasagi, H. Noguchi, and K. Tanimoto, “Numerical and experimental study on turbulent thermal mixing in a T-junction flow,” in Proc. of the 6th ASME-JSME Thermal Eng. Joint Conf., 2003.Google Scholar
  23. 23.
    A. S. Kozelkov etc., Mathematical Models and Algorithms for the Numerical Simulation of Fluid Dynamics Problems (Nizhegorodskii Gos. Tekhn. Univ., Nizhnii Novgorod, 2014) [in Russian].Google Scholar
  24. 24.
    A. S. Kozelkov etc., “The minimal set of benchmarks for the validation of methods for the numerical simulation of turbulent flows of viscous incompressible fluid,” Trudy Nizhegor. Gos. Tekhn. Univ., No. 4 (104), 21–69 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. S. Kozelkov
    • 1
  • O. L. Krutyakova
    • 1
  • V. V. Kurulin
    • 1
  • S. V. Lashkin
    • 1
  • E. S. Tyatyushkina
    • 1
  1. 1.Russian Federal Nuclear Center—All-Russia Institute of Experimental PhysicsSarovRussia

Personalised recommendations