Advertisement

A relation between two simple localized solutions of the wave equation

  • A. S. Blagoveshchensky
  • A. P. Kiselev
Article
  • 37 Downloads

Abstract

A relation between two previously known exact solutions of the wave equation that describe propagation of localized waves is found.

Keywords

wave equation localized solutions exact solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Localized Waves, Ed. by H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami (Wiley-VCH, Berlin, 2013).Google Scholar
  2. 2.
    A. M. Tagirdzhanov and A. P. Kiselev, “Complexified spherical waves and their sources: A review,” Opt. Spectrosc. 119 (2), 661–681 (2015).CrossRefGoogle Scholar
  3. 3.
    C. J. R. Sheppard and S. Saghafi, “Beam modes beyond the paraxial approximation: A scalar treatment,” Phys. Rev. A 57 (4), 2971–2979 (1998).CrossRefGoogle Scholar
  4. 4.
    A. M. Tagirdzhanov, A. S. Blagovestchenskii, and A. P. Kiselev, “Complex source’ wavefields: Sources in real space,” J. Phys. A 44 (42), 425203 (2011).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    P. Hillion, “The Courant–Hilbert solutions of the wave equation,” J. Math. Phys. 33 (8), 2749–2753 (1992).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    E. Heyman and L. B. Felsen, “Complex-source pulsed-beam fields,” J. Opt. Soc. Am. A 6 (6), 806–817 (1989).CrossRefGoogle Scholar
  7. 7.
    A. S. Blagovestchenskii, A. P. Kiselev, and A. M. Tagirdzhanov, “Simple solutions of the wave equation, with a singularity at a moving point, based on the complexified Bateman solution,” J. Math. Sci. 224 (1), 47–53 (2017).CrossRefGoogle Scholar
  8. 8.
    L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 1: Distribution Theory and Fourier Analysis (Springer-Verlag, Berlin, 1983; Mir, Moscow, 1986).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.St. Petersburg Branch, Steklov Mathematical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations