Skip to main content
Log in

Solution of the Wang Chang–Uhlenbeck equation for molecular hydrogen

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Molecular hydrogen is modeled by numerically solving the Wang Chang–Uhlenbeck equation. The differential scattering cross sections of molecules are calculated using the quantum mechanical scattering theory of rigid rotors. The collision integral is computed by applying a fully conservative projection method. Numerical results for relaxation, heat conduction, and a one-dimensional shock wave are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Wang Chang and G. E. Uhlenbeck, “Transport phenomena in polyatomic gases,” Research Report No. CM-681 (Univ. of Michigan, 1951).

    Google Scholar 

  2. J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972; Mir, Moscow, 1976).

    Google Scholar 

  3. R. F. Snider, “Quantum-mechanical modified Boltzmann equation for degenerate internal states,” J. Chem. Phys. 32 (4), 1051–1060 (1960).

    Article  MathSciNet  Google Scholar 

  4. M. W. Thomas and R. F. Snider, “Boltzmann equation and angular momentum conservation,” J. Stat. Phys. 2 (1), 61–81 (1970).

    Article  Google Scholar 

  5. K. Koura, “Monte Carlo direct simulation of rotational relaxation of diatomic molecules using classical trajectory calculations: Nitrogen shock wave,” Phys. Fluids 9 (11), 3543–3549 (1997).

    Article  Google Scholar 

  6. F. G. Tcheremissine, “Method for solving the Boltzmann kinetic equation for polyatomic gases,” Comput. Math. Math. Phys. 52 (2), 252–268 (2012).

    Article  MathSciNet  Google Scholar 

  7. Yu. A. Anikin and O. I. Dodulad, “Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories,” Comput. Math. Math. Phys. 53 (7), 1026–1043 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Takayanagi, “The production of rotational and vibrational transitions in encounters between molecules,” Adv. At. Mol. Phys. 1, 149–194 (1965).

    Article  MathSciNet  Google Scholar 

  9. D. K. Veirs and G. M. Rosenblatt, “Raman line positions in molecular hydrogen: H2, HD, HT, D2, DT, and T2,” J. Mol. Spectrosc. 121 (2), 401–419 (1987).

    Article  Google Scholar 

  10. S. Green, “Rotational excitation in H2–H2 collisions: Close-coupling calculations,” J. Chem. Phys. 62 (6), 2271–2277 (1975).

    Article  Google Scholar 

  11. P. Diep and J. K. Johnson, “An accurate H2–H2 interaction potential from first principles, J. Chem. Phys. 112 (10), 4465–4473 (2000); Erratum: J. Chem. Phys. 113 (8), 3480–3481 (2000).

    Article  Google Scholar 

  12. B. Maté, F. Thibault, G. Tejeda, J. M. Fernández, and S. Montero, “Inelastic collisions in para-H2: Translation- rotation state-to-state rate coefficients and cross sections at low temperature and energy,” J. Chem. Phys. 122 (6), 064313 (2005).

    Article  Google Scholar 

  13. B. R. Johnson, “The multichannel log-derivative method for scattering calculations,” J. Comput. Phys. 13 (3), 445–449 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  14. Yu. Ya. Milenko, R. M. Sibileva, and M. A. Strzhemechny, “Natural ortho-para conversion rate in liquid and gaseous hydrogen,” J. Low Temp. Phys. 107 (1), 77–92 (1997).

    Article  Google Scholar 

  15. J. M. Blatt and L. C. Biedenharn, “The angular distribution of scattering and reaction cross sections,” Rev. Mod. Phys. 24 (4), 258–272 (1952).

    Article  MATH  Google Scholar 

  16. J. Schaefer, “Transport coefficients of dilute hydrogen gas, calculations and comparisons with experiments,” Chem. Phys. 368 (1–2), 38–48 (2010).

    Article  Google Scholar 

  17. J. M. Hutson and S. Green, MOLSCAT version 14, 1994. Collaborative Comput. Project no. 6 of the UK Sci. Eng. Research Council. http://www.giss.nasa.gov/tools/molscat/

  18. Yu. A. Anikin, “On the accuracy of the projection computation of the collision integral,” Comput. Math. Math. Phys. 52 (4), 615–636 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. J. Assael, S. Mixafendi, and W. A. Wakeham, “The viscosity and thermal conductivity of normal hydrogen in the limit of zero density,” J. Phys. Chem. Ref. Data 15 (4), 1315–1322 (1986).

    Article  Google Scholar 

  20. J. W. Leachman, R. T. Jacobsen, S. G. Penoncello, and M. L. Huber, “Current status of transport properties of hydrogen,” Int. J. Thermophys. 28 (3), 773–795 (2007).

    Article  Google Scholar 

  21. R. M. Jonkman, G. J. Prangsma, I. Ertas, H. F. P. Knaap, and J. J. M. Beenakker, “Rotational relaxation in mixtures of hydrogen isotopes and noble gases,” Physica A 38 (3), 451–455 (1968).

    Google Scholar 

  22. C. G. Sluijter, H. F. P. Knaap, and J. J. M. Beenakker, “Determination of rotational relaxation times of hydrogen isotopes by sound absorption measurement at low temperatures,” Physica A 30 (4), 745–762 (1964).

    Google Scholar 

  23. P. W. Huber and A. Kantrowitz, “Heat-capacity lag measurements in various gases,” J. Chem. Phys. 15 (5), 275–284 (1957).

    Article  Google Scholar 

  24. R. J. Gallagher and J. B. Fenn, “Rotational relaxation of molecular hydrogen,” J. Chem. Phys. 60 (9), 3492–3498 (1974).

    Article  Google Scholar 

  25. T. G. Winter and G. L. Hill, “High-temperature ultrasonic measurements rotational relaxation in hydrogen, deuterium, nitrogen and oxygen,” J. Acoust. Soc. Am. 42 (4), 848–858 (1967).

    Article  Google Scholar 

  26. Yu. A. Anikin, “Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation,” Comput. Math. Math. Phys. 51 (7), 1251–1266 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. J. Assael, J.-A. M. Assael, M. L. Huber, R. A. Perkins, and Y. Takata, “Correlation of the thermal conductivity of normal and parahydrogen from the triple point to 1000 K and up to 100 MPa,” J. Phys. Chem. Ref. Data 40 (3), 033101 (2011).

    Article  Google Scholar 

  28. E. F. Greene and D. F. Hornig, “The shape and thickness of shock fronts in argon, hydrogen, nitrogen, and oxygen,” J. Chem. Phys. 21 (4), 617–624 (1953).

    Article  Google Scholar 

  29. L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1995; Butterworth-Heinemann, Oxford, 1980), Part 1.

    MATH  Google Scholar 

  30. S. Takata and H. Umetsu, “Numerical study on effective configurations of the Knudsen pump for separation and compression,” AIP Conf. Proc. 1333 (1), 998–1003 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Anikin.

Additional information

Original Russian Text © Yu.A. Anikin, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 6, pp. 1061–1079.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikin, Y.A. Solution of the Wang Chang–Uhlenbeck equation for molecular hydrogen. Comput. Math. and Math. Phys. 57, 1048–1065 (2017). https://doi.org/10.1134/S0965542517060033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517060033

Keywords

Navigation