Solution of the Wang Chang–Uhlenbeck equation for molecular hydrogen

  • Yu. A. Anikin


Molecular hydrogen is modeled by numerically solving the Wang Chang–Uhlenbeck equation. The differential scattering cross sections of molecules are calculated using the quantum mechanical scattering theory of rigid rotors. The collision integral is computed by applying a fully conservative projection method. Numerical results for relaxation, heat conduction, and a one-dimensional shock wave are presented.


molecular hydrogen Wang Chang–Uhlenbeck equation collision integral projection method shock wave 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. S. Wang Chang and G. E. Uhlenbeck, “Transport phenomena in polyatomic gases,” Research Report No. CM-681 (Univ. of Michigan, 1951).Google Scholar
  2. 2.
    J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972; Mir, Moscow, 1976).Google Scholar
  3. 3.
    R. F. Snider, “Quantum-mechanical modified Boltzmann equation for degenerate internal states,” J. Chem. Phys. 32 (4), 1051–1060 (1960).MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. W. Thomas and R. F. Snider, “Boltzmann equation and angular momentum conservation,” J. Stat. Phys. 2 (1), 61–81 (1970).CrossRefGoogle Scholar
  5. 5.
    K. Koura, “Monte Carlo direct simulation of rotational relaxation of diatomic molecules using classical trajectory calculations: Nitrogen shock wave,” Phys. Fluids 9 (11), 3543–3549 (1997).CrossRefGoogle Scholar
  6. 6.
    F. G. Tcheremissine, “Method for solving the Boltzmann kinetic equation for polyatomic gases,” Comput. Math. Math. Phys. 52 (2), 252–268 (2012).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Yu. A. Anikin and O. I. Dodulad, “Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories,” Comput. Math. Math. Phys. 53 (7), 1026–1043 (2013).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    K. Takayanagi, “The production of rotational and vibrational transitions in encounters between molecules,” Adv. At. Mol. Phys. 1, 149–194 (1965).MathSciNetCrossRefGoogle Scholar
  9. 9.
    D. K. Veirs and G. M. Rosenblatt, “Raman line positions in molecular hydrogen: H2, HD, HT, D2, DT, and T2,” J. Mol. Spectrosc. 121 (2), 401–419 (1987).CrossRefGoogle Scholar
  10. 10.
    S. Green, “Rotational excitation in H2–H2 collisions: Close-coupling calculations,” J. Chem. Phys. 62 (6), 2271–2277 (1975).CrossRefGoogle Scholar
  11. 11.
    P. Diep and J. K. Johnson, “An accurate H2–H2 interaction potential from first principles, J. Chem. Phys. 112 (10), 4465–4473 (2000); Erratum: J. Chem. Phys. 113 (8), 3480–3481 (2000).CrossRefGoogle Scholar
  12. 12.
    B. Maté, F. Thibault, G. Tejeda, J. M. Fernández, and S. Montero, “Inelastic collisions in para-H2: Translation- rotation state-to-state rate coefficients and cross sections at low temperature and energy,” J. Chem. Phys. 122 (6), 064313 (2005).CrossRefGoogle Scholar
  13. 13.
    B. R. Johnson, “The multichannel log-derivative method for scattering calculations,” J. Comput. Phys. 13 (3), 445–449 (1973).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Yu. Ya. Milenko, R. M. Sibileva, and M. A. Strzhemechny, “Natural ortho-para conversion rate in liquid and gaseous hydrogen,” J. Low Temp. Phys. 107 (1), 77–92 (1997).CrossRefGoogle Scholar
  15. 15.
    J. M. Blatt and L. C. Biedenharn, “The angular distribution of scattering and reaction cross sections,” Rev. Mod. Phys. 24 (4), 258–272 (1952).CrossRefMATHGoogle Scholar
  16. 16.
    J. Schaefer, “Transport coefficients of dilute hydrogen gas, calculations and comparisons with experiments,” Chem. Phys. 368 (1–2), 38–48 (2010).CrossRefGoogle Scholar
  17. 17.
    J. M. Hutson and S. Green, MOLSCAT version 14, 1994. Collaborative Comput. Project no. 6 of the UK Sci. Eng. Research Council. Scholar
  18. 18.
    Yu. A. Anikin, “On the accuracy of the projection computation of the collision integral,” Comput. Math. Math. Phys. 52 (4), 615–636 (2012).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    M. J. Assael, S. Mixafendi, and W. A. Wakeham, “The viscosity and thermal conductivity of normal hydrogen in the limit of zero density,” J. Phys. Chem. Ref. Data 15 (4), 1315–1322 (1986).CrossRefGoogle Scholar
  20. 20.
    J. W. Leachman, R. T. Jacobsen, S. G. Penoncello, and M. L. Huber, “Current status of transport properties of hydrogen,” Int. J. Thermophys. 28 (3), 773–795 (2007).CrossRefGoogle Scholar
  21. 21.
    R. M. Jonkman, G. J. Prangsma, I. Ertas, H. F. P. Knaap, and J. J. M. Beenakker, “Rotational relaxation in mixtures of hydrogen isotopes and noble gases,” Physica A 38 (3), 451–455 (1968).Google Scholar
  22. 22.
    C. G. Sluijter, H. F. P. Knaap, and J. J. M. Beenakker, “Determination of rotational relaxation times of hydrogen isotopes by sound absorption measurement at low temperatures,” Physica A 30 (4), 745–762 (1964).Google Scholar
  23. 23.
    P. W. Huber and A. Kantrowitz, “Heat-capacity lag measurements in various gases,” J. Chem. Phys. 15 (5), 275–284 (1957).CrossRefGoogle Scholar
  24. 24.
    R. J. Gallagher and J. B. Fenn, “Rotational relaxation of molecular hydrogen,” J. Chem. Phys. 60 (9), 3492–3498 (1974).CrossRefGoogle Scholar
  25. 25.
    T. G. Winter and G. L. Hill, “High-temperature ultrasonic measurements rotational relaxation in hydrogen, deuterium, nitrogen and oxygen,” J. Acoust. Soc. Am. 42 (4), 848–858 (1967).CrossRefGoogle Scholar
  26. 26.
    Yu. A. Anikin, “Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation,” Comput. Math. Math. Phys. 51 (7), 1251–1266 (2011).MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    M. J. Assael, J.-A. M. Assael, M. L. Huber, R. A. Perkins, and Y. Takata, “Correlation of the thermal conductivity of normal and parahydrogen from the triple point to 1000 K and up to 100 MPa,” J. Phys. Chem. Ref. Data 40 (3), 033101 (2011).CrossRefGoogle Scholar
  28. 28.
    E. F. Greene and D. F. Hornig, “The shape and thickness of shock fronts in argon, hydrogen, nitrogen, and oxygen,” J. Chem. Phys. 21 (4), 617–624 (1953).CrossRefGoogle Scholar
  29. 29.
    L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1995; Butterworth-Heinemann, Oxford, 1980), Part 1.MATHGoogle Scholar
  30. 30.
    S. Takata and H. Umetsu, “Numerical study on effective configurations of the Knudsen pump for separation and compression,” AIP Conf. Proc. 1333 (1), 998–1003 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations