Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink

  • M. Bilal Ashraf
  • A. Alsaedi
  • T. Hayat
  • S. A. Shehzad
Article
  • 48 Downloads

Abstract

Heat and mass transfer effects in the three-dimensional mixed convection flow of a viscoelastic fluid with internal heat source/sink and chemical reaction have been investigated in the present work. The flow generation is because of an exponentially stretching surface. Magnetic field normal to the direction of flow is considered. Convective conditions at the surface are also encountered. Appropriate similarity transformations are utilized to reduce the boundary layer partial differential equations into the ordinary differential equations. The homotopy analysis method is used to develop the solution expressions. Impacts of different controlling parameters such as ratio parameter, Hartman number, internal heat source/sink, chemical reaction, mixed convection, concentration buoyancy parameter and Biot numbers on the velocity, temperature and concentration profiles are analyzed. The local Nusselt and Sherwood numbers are sketched and examined.

Keywords

viscoelastic fluid three dimensional flow mixed convection flow exponentially stretching surface chemical reaction heat source/sink 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. J. Crane, “Flow past a stretching plate,” Z. Angew. Math. Phys. 21, 645–647 (1970).CrossRefGoogle Scholar
  2. 2.
    M. M. Rashidi, A. J. Chamkha, and M. Keimanesh, “Application of multi-step differential transform method on flow of a second-grade fluid over a stretching or shrinking sheet,” Am. J. Comput. Math. 6, 119–128 (2011).CrossRefGoogle Scholar
  3. 3.
    A. Ahmad and S. Asghar, “Flow of a second grade fluid over a sheet stretching with arbitrary velocities subject to a transverse magnetic field,” Appl. Math. Lett. 24, 1905–1909 (2011).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    T. Hayat, S. A. Shehzad, M. Qasim, and S. Obaidat, “Flow of a second grade fluid with convective boundary conditions,” Thermal Sci. S 15, 253–261 (2011).CrossRefGoogle Scholar
  5. 5.
    M. Nazar, C. Fetecau, D. Vieru, and C. Fetecau, “New exact solutions corresponding to the second problem of Stokes for second grade fluids,” Nonlinear Anal. Real World Appl. 11, 584–591 (2010).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    R. Nazar and N. A. Latip, “Numerical investigation of three-dimensional boundary layer flow due to a stretching surface in a viscoelastic fluid,” Eur. J. Sci. Res. 29, 509–517 (2009).Google Scholar
  7. 7.
    K. Bhattacharyya, M. S. Uddin, G. C. Layek, and M. A. Malek, “Effect of chemically reactive solute diffusion on boundary layer flow past a stretching surface with suction or blowing,” J. Math. Math. Sci. 25, 41–48 (2010).Google Scholar
  8. 8.
    R. Cortell, “Viscous flow and heat transfer over a nonlinearly stretching sheet,” Appl. Math. Comput. 184, 864–873 (2007).MathSciNetMATHGoogle Scholar
  9. 9.
    S. Abbasbandy, H. R. Ghehsareh, and I. Hashim, “An approximate solution of the MHD flow over a nonlinearly stretching sheet by rational Chebyshev collocation method,” UPB. Sci. Bull. 74 (2012).Google Scholar
  10. 10.
    S. Mukhopadhyay, “Casson fluid flow and heat transfer over a nonlinearly stretching surface,” Chin. Phys. B 22, 074701 (2013).CrossRefGoogle Scholar
  11. 11.
    M. Turkyilmazoglu and I. Pop, “Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid,” Int. J. Heat Mass Transf. 57, 82–88 (2013).CrossRefGoogle Scholar
  12. 12.
    M. Q. Al-Odat, R. A. Damesh, and T. A. Al-Azab, “Thermal boundary layer on an exponentially stretching continuous surface in the presence of magnetic field,” Int. J. Appl. Mech. Eng. 11, 289–299 (2006).MATHGoogle Scholar
  13. 13.
    M. Sajid and T. Hayat, “Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet,” Int. Commun. Heat Mass Transfer 35, 347–356 (2008).CrossRefGoogle Scholar
  14. 14.
    S. Nadeem and C. Lee, “Boundary layer flow of nanofluid over an exponentially stretching surface,” Nanoscale Res. Lett. 7, 94 (2012).CrossRefGoogle Scholar
  15. 15.
    K. Bhattacharyya, “Boundary layer flow and heat transfer over an exponentially shrinking sheet,” Chin. Phys. Lett. 28, 074701 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Mukhopadhyay, K. Vajravelu, and R. A. V. Gorder, “Casson fluid flow and heat transfer at an exponentially stretching permeable surface,” J. Appl. Mech. 80, 054502 (2013).CrossRefGoogle Scholar
  17. 17.
    M. Mustafa, T. Hayat, and S. Obaidat, “Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions,” Int. J. Numer. Meth. Heat Fluid Flow 23, 945–959 (2013).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    I. C. Liu, H. H. Wang, and Y. F. Peng, “Flow and heat transfer for three dimensional flow over an exponentially stretching surface,” Chem. Eng. Commun. 200, 253–268 (2013).CrossRefGoogle Scholar
  19. 19.
    S. Mukhopadhyay, G. C. Layek, and S. K. A. Samad, “Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity,” Int. J. Heat Mass Transf. 48, 4460–4466 (2005).CrossRefMATHGoogle Scholar
  20. 20.
    S. S. Motsa, T. Hayat, and O. M. Aldossary, “MHD flow of upper-convected Maxwell fluid over porous stretching sheet using successive Taylor series linearization method,” Appl. Math. Mech., 975–990 (2012).Google Scholar
  21. 21.
    M. M. Rashidi and E. Erfani, “A new analytical study of MHD stagnation-point flow in porous media with heat transfer,” Comput. Fluids 40, 172–178 (2011).CrossRefMATHGoogle Scholar
  22. 22.
    S. Mukhopadhyay, “Effects of slip on unsteady mixed convective flow and heat transfer past a stretching surface,” Chin. Phys. Lett. 27, 124401 (2010).CrossRefGoogle Scholar
  23. 23.
    T. Hayat, Z. Abbas, I. Pop, and S. Asghar, “Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium,” Int. J. Heat Mass Transf. 53, 466–474 (2010).CrossRefMATHGoogle Scholar
  24. 24.
    M. Turkyilmazoglu, “The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface,” Int. J. Mech. Sci. 77, 263–268 (2013).CrossRefGoogle Scholar
  25. 25.
    E. M. A. Elbashbeshy and D. A. Aldawody, “Heat transfer over an unsteady stretching surface with variable heat flux in the presence of a heat source or sink,” Comput. Math. Appl. 60, 2806–2811 (2010).MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    R. Kandasamy, T. Hayat, and S. Obaidat, “Group theory transformation for Soret and Dufour effects on free convective heat and mass transfer with thermophoresis and chemical reaction over a porous stretching surface in the presence of heat source/sink,” Nuclear Eng. Design 241, 2155–2161 (2011).CrossRefGoogle Scholar
  27. 27.
    A. Aziz, “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition,” Commun. Nonlinear Sci. Numer. Simul. 14, 1064–1068 (2009).CrossRefGoogle Scholar
  28. 28.
    O. D. Makinde and A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition,” Int. J. Therm. Sci. 50, 1326–1332 (2011).CrossRefGoogle Scholar
  29. 29.
    S. A. Shehzad, T. Hayat, and A. Alsaedi, “Three-dimensional flow of Jeffery fluid with convective surface boundary conditions,” Int. J. Heat Mass Transf. 55, 3971–3976 (2012).CrossRefGoogle Scholar
  30. 30.
    M. M. Rashidi, N. F. Mehr, A. Hosseini, O. A. Bég, and T. K. Hung, “Homotopy simulation of nanofluid dynamics from a nonlinearly stretching isothermal permeable sheet with transpiration,” Meccanica. doi 10.1007/s11012-013-9805-9Google Scholar
  31. 31.
    Y.P. Liu, S. J. Liao, and Z. B. Li, “Symbolic computation of strongly nonlinear periodic oscillations,” J. Symb. Comput. 55, 72–95 (2013).MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    S. Abbasbandy, M. S. Hashemi, and I. Hashim, “On convergence of homotopy analysis method and its application to fractional integro-differential equations,” Quaestiones Math. 36, 93–105 (2013).MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    L. Zheng, J. Niu, X. Zhang, and Y. Gao, “MHD flow and heat transfer over a porous shrinking surface with velocity slip and temperature jump,” Math. Comput. Model. 56, 133–144 (2012).MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    M. M. Rashidi, S.C. Rajvanshi, and M. Keimanesh, “Study of Pulsatile flow in a porous annulus with the homotopy analysis method,” Int. J. Numer. Methods Heat Fluid Flow 22, 971–989 (2012).CrossRefMATHGoogle Scholar
  35. 35.
    M. Turkyilmazoglu, “Solution of Thomas–Fermi equation with a convergent approach,” Commun. Nonlinear Sci. Numer. Simul. 17, 4097–4103 (2012).MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    T. Hayat, M. B. Ashraf, H. H. Alsulami, and M. S. Alhuthali, “Three dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions,” Plos One 9, e90038 (2014).CrossRefGoogle Scholar
  37. 37.
    H. N. Hassan and M. M. Rashidi, “An analytic solution of micropolar flow in a porous channel with mass injection using homotopy analysis method,” Int. J. Numer. Methods Heat Fluid Flow 24 (2), 419–437 (2014).MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    T. Hayat, S. A. Shehzad, M. B. Ashraf, and A. Alsaedi, “Magnetohydrodynamic mixed convection flow of thixotropic fluid with thermophoresis and Joule heating,” J. Thermophys. Heat Transf. 27, 733–740 (2013).CrossRefGoogle Scholar
  39. 39.
    T. Hayat, M. B. Ashraf, and A. Alsaedi, “Small-time solutions for the thin-film flow of a Casson fluid due to a suddenly moved plate,” J. Aerosp. Eng. 27, 04014034 (2014).CrossRefGoogle Scholar
  40. 40.
    T. Hayat, M. Farooq, and A. Alsaedi, “Melting heat transfer in the stagnation point flow of Maxwell fluid with double-diffusive convection,” Int. J. Numer. Methods Heat Fluid Flow 24, 760–774 (2014).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. Bilal Ashraf
    • 2
  • A. Alsaedi
    • 1
  • T. Hayat
    • 1
    • 3
  • S. A. Shehzad
    • 4
  1. 1.Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of MathematicsComsats Institute of Information TechnologyWah CanttPakistan
  3. 3.Department of MathematicsQuaid-i-Azam University 45320IslamabadPakistan
  4. 4.Department of MathematicsComsats Institute of Information TechnologySahiwalPakistan

Personalised recommendations