Advertisement

Modified method of splitting with respect to physical processes for solving radiation gas dynamics equations

Article
  • 22 Downloads

Abstract

An approach based on a modified splitting method is proposed for solving the radiation gas dynamics equations in the multigroup kinetic approximation. The idea of the approach is that the original system of equations is split using the thermal radiation transfer equation rather than the energy equation. As a result, analytical methods can be used to solve integrodifferential equations and problems can be computed in the multigroup kinetic approximation without iteration with respect to the collision integral or matrix inversion. Moreover, the approach can naturally be extended to multidimensional problems. A high-order accurate difference scheme is constructed using an approximate Godunov solver for the Riemann problem in two-temperature gas dynamics.

Keywords

splitting method discrete ordinate method thermal radiation transfer equation Godunov method Riemann problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1966, 1967), 2 Vols.Google Scholar
  2. 2.
    N. N. Yanenko, The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables (Nauka, Novosibirsk, 1967; Springer-Verlag, Berlin, 1971).MATHGoogle Scholar
  3. 3.
    G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian].MATHGoogle Scholar
  4. 4.
    B. N. Chetverushkin, Mathematical Simulation Radiating Gas Dynamics (Nauka, Moscow, 1985) [in Russian].MATHGoogle Scholar
  5. 5.
    Shih-I Pai, Radiation Gas Dynamics (Springer-Verlag, Wien, 1966; Mir, Moscow, 1968).CrossRefMATHGoogle Scholar
  6. 6.
    O. M. Belotserkovskii and Yu. M. Davydov, Large-Particle Method in Gas Dynamics (Fizmatlit, Moscow, 1982) [in Russian].Google Scholar
  7. 7.
    B. G. Carlson and G. I. Bell, “Solution of the transport equation by the Sn method,” in Proceeding of the Second Unified Nations International Conference on the Peaceful Uses of Atomic Energy, P/2386 (Unified Nations, 1958), Vol. 16, pp. 535–549.Google Scholar
  8. 8.
    B. G. Carlson and G. I. Bell, “Numerical solution of neutron transport problems,” in Proceedings of Symposia in Applied Mathematics, Vol. 11: Nuclear Reactor Theory (Am. Math. Soc., Providence, RI, 1961; Gosatomizdat, Moscow, 1963).Google Scholar
  9. 9.
    L. P. Bass, A. M. Voloshchenko, and T. A. Germogenova, Discrete Ordinate Methods for Radiative Transfer Problems (Inst. Prikl. Mat. im. M.V. Keldysha Ross. Akad. Nauk, Moscow, 1986) [in Russian].Google Scholar
  10. 10.
    V. S. Vladimirov, “Numerical solution of the equation for the sphere,” in Numerical Mathematics (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1958), pp. 3–33 [in Russian].Google Scholar
  11. 11.
    A. V. Nikiforova, V. A. Tarasov, and V. E. Troshchiev, “Solution of the kinetic equations by the divergent method of characteristics,” USSR Comput. Math. Math. Phys. 12 (4), 251–260 (1972).CrossRefGoogle Scholar
  12. 12.
    P. C. R. Feautrier, “Sur la resolution numerique de l’equation de transfert,” Acad. Sci. Paris 258, 3189–3191 (1964).Google Scholar
  13. 13.
    G. Rybicki, “A modified Feautrier method,” J. Quant. Spectrosc. Radiat. Transfer 11, 589–596 (1971).CrossRefGoogle Scholar
  14. 14.
    V. Ya. Gol’din, “A quasi-diffusion method of solving the kinetic equation,” USSR Comput. Math. Math. Phys. 4 (6), 136–149 (1964).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    D. Yu. Anistratov, E. N. Aristova, and V. Ya. Gol’din, “Nonlinear method for solving problems of radiative transfer in media,” Mat. Model. 8 (12), 3–28 (1996).MathSciNetMATHGoogle Scholar
  16. 16.
    A. I. Zuev, “Application of the Newton–Kantorovich method for solving the problem of propagation of nonequilibrium radiation,” USSR Comput. Math. Math. Phys. 13 (3), 338–346 (1973).CrossRefGoogle Scholar
  17. 17.
    V. Yu. Gusev, M. Yu. Kozmanov, and E. B. Rachilov, “A method of solving implicit difference equations approximating systems of radiation transport and diffusion equations,” USSR Comput. Math. Math. Phys. 24 (12), 156–161 (1984).CrossRefMATHGoogle Scholar
  18. 18.
    L. P. Fedotova and R. M. Shagaliev, “Finite-difference KM method for two-dimensional unsteady transport processes in the multigroup transport approximation,” Mat. Model. 3 (6), 29–41 (1991).MathSciNetMATHGoogle Scholar
  19. 19.
    A. D. Gadzhiev, E. M. Romanova, V. N. Seleznev, and A. A. Shestakov, “TOM4-KD method for mathematical simulation of two-dimensional radiative transfer equations in the multigroup quasi-diffusion approximation,” Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Processov, No. 4, 48–59 (2001).Google Scholar
  20. 20.
    N. G. Karlykhanov, “Construction of optimal multidiagonal methods for solving radiation-transfer problems,” Comput. Math. Math. Phys. 37 (4), 482–486 (1997).MathSciNetMATHGoogle Scholar
  21. 21.
    G. V. Dolgoleva, “Numerical solution of the system of equations describing radiative transfer and the interaction of radiation with matter,” Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Processov, No. 1, 58–60 (1991).Google Scholar
  22. 22.
    A. A. Samarskii, Introduction to the Theory of Difference Schemes (Nauka, Moscow, 1971) [in Russian].Google Scholar
  23. 23.
    A. A. Samarskii and P. N. Vabishchevich, Additive Schemes for Problems in Mathematical Physics (Nauka, Moscow, 2001) [in Russian].MATHGoogle Scholar
  24. 24.
    V. V. Smelov, Lectures on the Theory of Neutron Transport (Atomizdat, Moscow, 1978) [in Russian].Google Scholar
  25. 25.
    D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1978; Mir, Moscow, 1982).Google Scholar
  26. 26.
    E. V. Groshev, “Application of Rybicki’s method to the iterative solution of radiative transfer equations using boundary conditions,” Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Processov, No. 1, 39–47 (2010).Google Scholar
  27. 27.
    A. D. Gadzhiev, V. N. Seleznev, and A. A. Shestakov, “DSn-method with artificial dissipation and dmt method of iteration acceleration for the numerical solution of two-dimensional heat transfer equations in kinetic approximation,” Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Processov, No. 4, 33–46 (2003).Google Scholar
  28. 28.
    R. E. Alcouff, “A stable diffusion synthetic acceleration method for neutron transport iterations,” Trans. Am. Nucl. Soc. 23, 203 (1976).Google Scholar
  29. 29.
    R. E. Alcouff, D. R. McCoy, and E. W. Larsen, “Finite difference effects in the synthetic acceleration method,” Trans. Am. Nucl. Soc. 39, 462 (1981).Google Scholar
  30. 30.
    T. A. Sushkevich, Mathematical Models of Radiative Transfer (Binom, Moscow, 2006) [in Russian].Google Scholar
  31. 31.
    N. Ya. Moiseev, “Explicit-implicit difference scheme for the joint solution of the radiative transfer and energy equations by the splitting method,” Comput. Math. Math. Phys. 53 (3), 320–335 (2013).MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    N. Ya. Moiseev and V. M. Shmakov, “Modified splitting method for solving the nonstationary kinetic particle transport equation,” Comput. Math. Math. Phys. 56 (8), 1464–1473 (2016).MathSciNetCrossRefGoogle Scholar
  33. 33.
    G. I. Marchuk and N. N. Yanenko, “Solution of a multidimensional kinetic equation by the splitting method,” Dokl. Akad. Nauk SSSR 157 (6), 1291–1292 (1964).MathSciNetMATHGoogle Scholar
  34. 34.
    S. K. Godunov, “Difference method for computing discontinuous solutions of fluid dynamics equations,” Mat. Sb. 47 (3), 271–306 (1959).MathSciNetMATHGoogle Scholar
  35. 35.
    A. V. Zabrodin and G. P. Prokopov, “Method for the numerical modeling of plane unsteady flows of heat-conducting gas in three-temperature approximation,” Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Protsessov, No. 3, 3–16 (1998).Google Scholar
  36. 36.
    G. P. Prokopov, Preprint No. 66, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2004).Google Scholar
  37. 37.
    N. Ya. Moiseev and E. A. Shestakov, “Solution of the Riemann problem in two-and three-temperature gas dynamics,” Comput. Math. Math. Phys. 55 (9), 1547–1553 (2015).MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    W. Zhang, L. Howell, A. Almgren, A. Burrows, J. Dolence, and J. Bell, “Castro: A new compressible astrophysical solver. III: Multigroup radiation hydrodynamics,” The Astrophys. J. Suppl. Ser. 204 (7), 1–27 (2013).Google Scholar
  39. 39.
    A. N. Kraiko, Theoretical Gas Dynamics (Torus, Moscow, 2010) [in Russian].Google Scholar
  40. 40.
    A. A. Samarskii and Yu. P. Popov, Finite Difference Methods for Problems in Gas Dynamics (Nauka, Moscow, 1975) [in Russian].Google Scholar
  41. 41.
    N. Ya. Moiseev, “Consistent approximation in godunov-type difference schemes for one-dimensional problems of gas dynamics,” Comput. Math. Math. Phys. 36 (1), 125–126 (1996).Google Scholar
  42. 42.
    R. P. Fedorenko, “The application of difference schemes of high accuracy to the numerical solution of hyperbolic equations,” USSR Comput. Math. Math. Phys. 2 (6), 1355–1365 (1962).CrossRefMATHGoogle Scholar
  43. 43.
    N. Ya. Moiseev and I. Yu. Silant’eva, “High-order accurate difference schemes for solving gasdynamic equations by the Godunov method with antidiffusion,” Comput. Math. Math. Phys. 49 (5), 827–841 (2009).MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    N. Ya. Moiseev, “High-order accurate implicit running schemes,” Comput. Math. Math. Phys. 51 (5), 862–875 (2011).MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    K. A. Bagrinovskii and S. K. Godunov, “Finite-difference schemes for multidimensional problems,” Dokl. Akad. Nauk SSSR 115, 431–433 (1957).MathSciNetMATHGoogle Scholar
  46. 46.
    A. S. Vershinskaya, D. S. Netsvetaev, A. V. Urakova, and A. A. Shestakov, “On a test RGD problem concerning the compression of a layered system with allowance for radiative transfer in various approzimations,” Abstracts of the Zababakhin Scientific Conference (Ross. Fed. Yadern. Tsentr Vseross. Nauchn. Issled. Inst. Tekh. Fiz., Snezhinsk, 2014).Google Scholar
  47. 47.
    A. S. Antonov, Parallel Programming with Use of OpenMP Technology (Mosk. Univ., Moscow, 2009) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.All-Russia Research Institute of Technical PhysicsRussian Federal Nuclear CenterSnezhinsk, Chelyabinsk oblastRussia

Personalised recommendations