Skip to main content
Log in

A new sequential approach for solving the integro-differential equation via Haar wavelet bases

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this work, we present a method for numerical approximation of fixed point operator, particularly for the mixed Volterra–Fredholm integro-differential equations. The main tool for error analysis is the Banach fixed point theorem. The advantage of this method is that it does not use numerical integration, we use the properties of rationalized Haar wavelets for approximate of integral. The cost of our algorithm increases accuracy and reduces the calculation, considerably. Some examples are provided toillustrate its high accuracy and numerical results are compared with other methods in the other papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. R Thiem, “A model for spatio spread of an epidemic,” J. Math. Bio 4, 337–351 (1977).

    Article  Google Scholar 

  2. P. Darania and A. Ebadian, “A method for the numerical solution of the integro-differential equations,” Appl. Math. Comput. 188, 657–668 (2007).

    MathSciNet  MATH  Google Scholar 

  3. U. Lepik, “Haar wavelet method for nonlinear integro-differential equations,” Appl. Math. Comput. 176, 324–333 (2006).

    MathSciNet  MATH  Google Scholar 

  4. M. Erfanian and M. Gachpazan, “Rationalized Haar wavelet bases to approximate solution of nonlinear Fredholm integral equations with error analysis,” Appl. Math. Comput. 265, 304–312 (2015).

    MathSciNet  MATH  Google Scholar 

  5. M. Erfanian, M. Gachpazan, and H. Beiglo, “Solving mixed Fredholm–Volterra integral equations by using the operational matrix of RH wavelets,” SeMA J. 69, 25–36 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Maleknejad, B. Basirat, and E. Hashemizadeh, “Hybrid Legendre polynomials and Block-pulse functions approch for nonlinear Volterr–Fredholm integro-differential equations,” Comput. Math. Appl. 61, 2821–2828 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Babolian, Z. Masouria, and S. Hatamzadeh-Varmazyar, “New direct method to solve nonlinear Volterra–Fredholm integral and integro-differential equations using operational matrix with block-pulse functions,” Prog. Electromagn. Res. 8, 59–76 (2008).

    Article  Google Scholar 

  8. E. Babolian, Z. Masouria, and S. Hatamzadeh-Varmazyar, “Numerical solution of nonlinear Volterra–Fredholm integro-differential equations via direct method using triangular function,” Comput. Math. Appl. 58, 239–247 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Sepehriana and M. Razzaghi, “Single-term Walsh series method for the Volterra integro-differential equations,” Eng. Anal. Bound. Elem. 28, 1315–1319 (2004).

    Article  MATH  Google Scholar 

  10. A. Avudainayagam and C. Vani, “Wavelet–Galerkin method for integro-differential equations,” Word App. Sci. J. 7, 50–56 (2009).

    MATH  Google Scholar 

  11. J. Zhao and R. M. Corless, “Compact finite difference method for integro-differential equations,” Appl. Math. Comput. 177, 271–288 (2006).

    MathSciNet  MATH  Google Scholar 

  12. I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Commun. Pure Appl. Math. 41, 909–996 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. M. Combes, A. Grossmann, and P. Tchamitchian, Wavelets, Time-Frequency Methods, and Phase Space (Springer-Verlag, Berlin, 1989).

    MATH  Google Scholar 

  14. Y. Mayer, Wavelets and Applications (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  15. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, PA, 1992).

    Book  MATH  Google Scholar 

  16. M. B. Ruskai, G. Beylkin, P. Coifman, I. Daubechies, S. Mallat, Y. Mayer, and L. Raphael, Wavelets and Their Applications (Boston, 1992).

    MATH  Google Scholar 

  17. P. Wojtaszczyk, A Mathematical Introduction to Wavelets (Cambridge Univ. Press, Cambridge, 1997).

    Book  MATH  Google Scholar 

  18. M. T. Kajani and A. H. Vencheh, “Solving linear integro-differential equation with Legendre wavelets,” Int. J. Comput. Math. 81 (6), 719–726 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Lakestani, B. N. Saray, and M. Dehghan, “Numerical solution for the weakly singular Fredholm integrodifferential equations using Legendre multiwavelets,” J. Comput. Appl. Math. 235, 3291–3303 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Zhao and Q. Fan, “Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet,” Commun. Nonlinear Sci. Number. Simul. 17, 2333–2341 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Razzaghi and J. Nazarzadeh, “Walsh functions,” Wiley Encyclopedia Electric. Electron. Eng. 23, 429–440 (1999).

    Google Scholar 

  22. R. T. Lynch and J. J. Reis, “Haar transform image coding,” Proceedings of the National Telecommunications Conference, Dallas, Texas (1976), pp. 441–443.

    Google Scholar 

  23. J. J. Reis, R. T. Lynch, and J. Butman, “Adaptive Haar transform video bandwidth reduction system for RPVs,” Proceedings of Annual Meeting of Society of Photo-Optic Institute of Engineering (SPIE), San Diego, CA (1976), pp. 24–35.

    Google Scholar 

  24. K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind (Cambridge Univ. Press, Cambridge, 1997).

    Book  MATH  Google Scholar 

  25. M. I. Berenguer, M. V. Fernández Muñoz, A. I. Garralda-Guillem, and M. Ruiz Galán, “A sequential approach for solving the Fredholm integro-differential equation,” Appl. Math. Comput. 62, 297–304 (2012).

    MathSciNet  MATH  Google Scholar 

  26. M. I. Berenguer, M. V. Fernández Muñoz, A. I. Garralda-Guillem, and M. Ruiz Galán, “Numerical treatment of fixed point applied to the nonlinear Fredholm integral equation”, Fixed Point Theory Appl. (2009). doi 10.1155/2009/735638

    Google Scholar 

  27. H. Danfu and S. Xufeng, “Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integration,” Appl. Math. Comput. 194, 460–466 (2007).

    MathSciNet  MATH  Google Scholar 

  28. P. Darania and A. Ebadian, “A method for the numerical solution of the integro-differential equations,” Appl. Math. Comput. 188, 657–668 (2007).

    MathSciNet  MATH  Google Scholar 

  29. E. Yusufoglu (Agadjanov), “Improved homotopy perturbation method for solving Fredholm type integro-differential equations,” Chaos Solitons Fractals 41, 28–37 (2009).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Erfanian.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erfanian, M., Gachpazan, M. & Beiglo, H. A new sequential approach for solving the integro-differential equation via Haar wavelet bases. Comput. Math. and Math. Phys. 57, 297–305 (2017). https://doi.org/10.1134/S096554251702004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251702004X

Keywords

Navigation