A new sequential approach for solving the integro-differential equation via Haar wavelet bases

Article

Abstract

In this work, we present a method for numerical approximation of fixed point operator, particularly for the mixed Volterra–Fredholm integro-differential equations. The main tool for error analysis is the Banach fixed point theorem. The advantage of this method is that it does not use numerical integration, we use the properties of rationalized Haar wavelets for approximate of integral. The cost of our algorithm increases accuracy and reduces the calculation, considerably. Some examples are provided toillustrate its high accuracy and numerical results are compared with other methods in the other papers.

Keywords

rationalized Haar wavelet nonlinear integro-differential equation operational matrix fixed point theorem error analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. R Thiem, “A model for spatio spread of an epidemic,” J. Math. Bio 4, 337–351 (1977).CrossRefGoogle Scholar
  2. 2.
    P. Darania and A. Ebadian, “A method for the numerical solution of the integro-differential equations,” Appl. Math. Comput. 188, 657–668 (2007).MathSciNetMATHGoogle Scholar
  3. 3.
    U. Lepik, “Haar wavelet method for nonlinear integro-differential equations,” Appl. Math. Comput. 176, 324–333 (2006).MathSciNetMATHGoogle Scholar
  4. 4.
    M. Erfanian and M. Gachpazan, “Rationalized Haar wavelet bases to approximate solution of nonlinear Fredholm integral equations with error analysis,” Appl. Math. Comput. 265, 304–312 (2015).MathSciNetMATHGoogle Scholar
  5. 5.
    M. Erfanian, M. Gachpazan, and H. Beiglo, “Solving mixed Fredholm–Volterra integral equations by using the operational matrix of RH wavelets,” SeMA J. 69, 25–36 (2015).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    K. Maleknejad, B. Basirat, and E. Hashemizadeh, “Hybrid Legendre polynomials and Block-pulse functions approch for nonlinear Volterr–Fredholm integro-differential equations,” Comput. Math. Appl. 61, 2821–2828 (2011).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    E. Babolian, Z. Masouria, and S. Hatamzadeh-Varmazyar, “New direct method to solve nonlinear Volterra–Fredholm integral and integro-differential equations using operational matrix with block-pulse functions,” Prog. Electromagn. Res. 8, 59–76 (2008).CrossRefGoogle Scholar
  8. 8.
    E. Babolian, Z. Masouria, and S. Hatamzadeh-Varmazyar, “Numerical solution of nonlinear Volterra–Fredholm integro-differential equations via direct method using triangular function,” Comput. Math. Appl. 58, 239–247 (2009).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    B. Sepehriana and M. Razzaghi, “Single-term Walsh series method for the Volterra integro-differential equations,” Eng. Anal. Bound. Elem. 28, 1315–1319 (2004).CrossRefMATHGoogle Scholar
  10. 10.
    A. Avudainayagam and C. Vani, “Wavelet–Galerkin method for integro-differential equations,” Word App. Sci. J. 7, 50–56 (2009).MATHGoogle Scholar
  11. 11.
    J. Zhao and R. M. Corless, “Compact finite difference method for integro-differential equations,” Appl. Math. Comput. 177, 271–288 (2006).MathSciNetMATHGoogle Scholar
  12. 12.
    I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Commun. Pure Appl. Math. 41, 909–996 (1988).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    J. M. Combes, A. Grossmann, and P. Tchamitchian, Wavelets, Time-Frequency Methods, and Phase Space (Springer-Verlag, Berlin, 1989).MATHGoogle Scholar
  14. 14.
    Y. Mayer, Wavelets and Applications (Springer-Verlag, Berlin, 1992).Google Scholar
  15. 15.
    I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, PA, 1992).CrossRefMATHGoogle Scholar
  16. 16.
    M. B. Ruskai, G. Beylkin, P. Coifman, I. Daubechies, S. Mallat, Y. Mayer, and L. Raphael, Wavelets and Their Applications (Boston, 1992).MATHGoogle Scholar
  17. 17.
    P. Wojtaszczyk, A Mathematical Introduction to Wavelets (Cambridge Univ. Press, Cambridge, 1997).CrossRefMATHGoogle Scholar
  18. 18.
    M. T. Kajani and A. H. Vencheh, “Solving linear integro-differential equation with Legendre wavelets,” Int. J. Comput. Math. 81 (6), 719–726 (2004).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    M. Lakestani, B. N. Saray, and M. Dehghan, “Numerical solution for the weakly singular Fredholm integrodifferential equations using Legendre multiwavelets,” J. Comput. Appl. Math. 235, 3291–3303 (2011).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    L. Zhao and Q. Fan, “Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet,” Commun. Nonlinear Sci. Number. Simul. 17, 2333–2341 (2012).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    M. Razzaghi and J. Nazarzadeh, “Walsh functions,” Wiley Encyclopedia Electric. Electron. Eng. 23, 429–440 (1999).Google Scholar
  22. 22.
    R. T. Lynch and J. J. Reis, “Haar transform image coding,” Proceedings of the National Telecommunications Conference, Dallas, Texas (1976), pp. 441–443.Google Scholar
  23. 23.
    J. J. Reis, R. T. Lynch, and J. Butman, “Adaptive Haar transform video bandwidth reduction system for RPVs,” Proceedings of Annual Meeting of Society of Photo-Optic Institute of Engineering (SPIE), San Diego, CA (1976), pp. 24–35.Google Scholar
  24. 24.
    K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind (Cambridge Univ. Press, Cambridge, 1997).CrossRefMATHGoogle Scholar
  25. 25.
    M. I. Berenguer, M. V. Fernández Muñoz, A. I. Garralda-Guillem, and M. Ruiz Galán, “A sequential approach for solving the Fredholm integro-differential equation,” Appl. Math. Comput. 62, 297–304 (2012).MathSciNetMATHGoogle Scholar
  26. 26.
    M. I. Berenguer, M. V. Fernández Muñoz, A. I. Garralda-Guillem, and M. Ruiz Galán, “Numerical treatment of fixed point applied to the nonlinear Fredholm integral equation”, Fixed Point Theory Appl. (2009). doi 10.1155/2009/735638Google Scholar
  27. 27.
    H. Danfu and S. Xufeng, “Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integration,” Appl. Math. Comput. 194, 460–466 (2007).MathSciNetMATHGoogle Scholar
  28. 28.
    P. Darania and A. Ebadian, “A method for the numerical solution of the integro-differential equations,” Appl. Math. Comput. 188, 657–668 (2007).MathSciNetMATHGoogle Scholar
  29. 29.
    E. Yusufoglu (Agadjanov), “Improved homotopy perturbation method for solving Fredholm type integro-differential equations,” Chaos Solitons Fractals 41, 28–37 (2009).CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of Applied MathematicsSchool of Mathematical Sciences, Ferdowsi University of MashhadMashhadIran

Personalised recommendations