Advertisement

Asymptotic analysis of the model of gyromagnetic autoresonance

Article
  • 28 Downloads

Abstract

The system of ordinary differential equations that in a specific case describes the cyclotron motion of a charged particle in an electromagnetic wave is considered. The capture of the particle into autoresonance when its energy undergoes a significant change is studied. The main result is a description of the capture domain, which is the set of initial points in the phase plane where the resonance trajectories start. This description is obtained in the asymptotic approximation with respect to the small parameter that in this problem corresponds to the amplitude of the electromagnetic wave.

Keywords

nonlinear oscillations small parameter asymptotics autoresonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. P. Milant’ev, “The cyclotron autoresonance (to the 50th anniversary of the phenomenon discovery),” Usp. Fiz. Nauk 180, 875–884 (2013).CrossRefGoogle Scholar
  2. 2.
    L. A. Kalyakin, “Asymptotic analysis of self-resonance models,” Usp. Mat. Nauk 63 (5), 3–72 (2008).CrossRefGoogle Scholar
  3. 3.
    K. S. Golovanivsky, “The gyromagnetic autoresonance,” IEEE Trans. Plasma Sci. PS- 11 (1), 28–35 (1983).CrossRefGoogle Scholar
  4. 4.
    L. A. Kalyakin, “Asymptotic analysis of the model of the cyclotron gyromagnetic autoresonance,” Vestn. Chelyab. Gos. Univ., Ser. Fizika, No. 21, 68–74 (2015).Google Scholar
  5. 5.
    V. P. Milant’ev, “The cyclotron autoresonance phenomenon and its applications,” Usp. Fiz. Nauk 167, 3–16 (1997).CrossRefGoogle Scholar
  6. 6.
    K. S. Golovanivsky, “Autoresonant acceleration of electrons at nonlinear ECR in a magnetic field which is smoothly growing in time,” Physica Scripta 22, 126–133 (1980).CrossRefGoogle Scholar
  7. 7.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).Google Scholar
  8. 8.
    C. S. Roberts and S. J. Buchsbaum, “Motion of a charged particle in a constant magnetic field and a transverse electromagnetic wave propagating along the field,” Phys. Rev. A 135, 381–389 (1964).MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. A. Kolomenskii and A. N. Lebedev, “Resonance phenomena in the motion of particles in a plane electromagnetic wave,” Zh. Eksp. Teor. Fiz 44, 261–269 (1963).Google Scholar
  10. 10.
    V. Ya. Davydovskii, “On the resonance acceleration of charged particles by electromagnetic waves in a constant magnetic field,” Zh. Eksp. Teor. Fiz 43, 886–888 (1962).Google Scholar
  11. 11.
    V. I. Veksler, “A new method for the acceleration of relativistic particles,” Dokl. Akad. Nauk SSSR 43, 346–348 (1944).Google Scholar
  12. 12.
    V. I. Veksler, “On a new method for the acceleration of particles,” Dokl. Akad. Nauk SSSR 44, 393–396 (1944).Google Scholar
  13. 13.
    V. I. Arnol’d, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of the Classical and Celestial Mechanics (VINITI, Moscow, 1985) [in Russian].MATHGoogle Scholar
  14. 14.
    A. I. Neishtadt, “Crossing the separatrix in the resonance problem with a slowly varying parameter,” Prikl. Mat. Mekh. 39, 621–632 (1975).Google Scholar
  15. 15.
    O. M. Kiselev, “Oscillations near the separatrix in the Duffing equation,” Trudy Inst. Mat. Mek. Ural. Otd. Ross. Akad. Nauk. 18 (2), 141–153 (2012).Google Scholar
  16. 16.
    B. V. Chirikov, “Passage of a nonlinear oscillating system through the resonance,” Dokl. Akad. Nauk SSSR 125, 1015–1018 (1959).MathSciNetMATHGoogle Scholar
  17. 17.
    G. M. Zaslavsky and R. Z. Sagdeev, Nonlinear Physics: From the Pendulum to Turbulence and Chaos (Nauka, Moscow, 1977; Harwood, New York, 1988).Google Scholar
  18. 18.
    A. I. Neishtadt and A. V. Timofeev, “Autoresonance in electron cyclotron heating of a plasma,” Zh. Eksp. Teor. Fiz. 93, 1706–1713 (1987).Google Scholar
  19. 19.
    L. Friedland, “Spatial autoresonance cyclotron accelerator,” Phys. Plasmas 1, 421–428 (1994).CrossRefGoogle Scholar
  20. 20.
    A. P. Itin, A. I. Neishtadt, and A. A. Vasiliev, “Capture into resonance in dynamics of a charged partice in magnetic field and electrostatic wave,” Phys. D 141, 281–296 (2000).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    J. Fajans and L. Friedland, “Autoresonant (non stationary) excitation of a pendulum, plutinos, plasmas and other nonlinear oscillators,” Am. J. Phys. 69, 1096–1102 (2001).CrossRefGoogle Scholar
  22. 22.
    R. N. Garifullin, “An analysis of the growth of solutions to a nonlinear equation depending on the initial data,” in Collected Papers of School–Conference on Mathematics and Physics for Students, Graduate Students, and Young Scientists, Vol. 1: Mathematics (Ufa, 2003), pp. 189–195.Google Scholar
  23. 23.
    R. N. Garifullin, L. A. Kalyakin, and M. A. Shamsutdinov, “Autoresonance excitation of a breather in weak ferromagnetics,” Comput. Math. Math. Phys. 47, 1158–1170 (2007).MathSciNetCrossRefGoogle Scholar
  24. 24.
    L. A. Kalyakin, “Averaging in the autoresonance model,” Mat. Zametki 73, 449–452 (2003).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    R. N. Garifullin, “Asymptotic solution to the problem of autoresonance: Outer expansion,” Comput. Math. Math. Phys. 46, 1526–1538 (2006).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Mathematics, Ufa Research CenterRussian Academy of Sciences, UfaBashkortostanRussia

Personalised recommendations