Skip to main content
Log in

3D modeling of the aerodynamics and heat transfer in the combustion chamber of the BKZ-75 boiler of the Shakhtinsk cogeneration plant

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The processes of heat and mass transfer occurring in real furnaces of the industrial TPS’s have been investigated with the aid of advanced methods of the three-dimensional computer modeling. The computational experiments have been done on the study of the aerodynamics of high-temperature flows and heat transfer characteristics at a combustion of a low-grade Karaganda coal of the KR200 brand in the combustion chamber of the BKZ-75 boiler of the Shakhtinsk TPS. As a result of the execution of numerical experiments, the aerodynamic pattern of high-temperature flows as well as the temperature distribution in the main cross sections of the furnace chamber and along its height have been obtained. The radiation heat flux on the combustion chamber walls has been computed by the methods of numerical modeling, which has enabled the determination of the regions of its maximum action on furnace shields. The obtained pattern of the distribution in the furnace space of the heat release intensity at combustion determines the regions of the maximum interaction of the fuel and oxidizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Müller, Numerische Berechnung dreidimensionaler turbulenter Strömungen in Dampferzeugern mit Wärmeübergang und chemischen Reaktionen am Beispiel des SNCR-Verfahrens und der Kohleverbrennung, Fortschritt-Berichte VDI-Verlag, 1992, Vol. 6, No. 268.

  2. R. Leithner, Der Zero Emission Coal Alliance Prozess und ähnliche Kreisläufe, DECHEMA GVC-Jahrestagung, Karlsruhe, 2004.

    Google Scholar 

  3. A. Askarova, S. Bolegenova, V. Maximov, M. Beketayeva, and P. Safarik, Numerical modeling of pulverized coal combustion at thermal power plant boilers, Thermal Sci., 2015, Vol. 24, Iss. 3, P. 275–282.

    Article  Google Scholar 

  4. A.S. Askarova, V.E. Messerle, A.B. Ustimenko, S.A. Bolegenova, and V.Yu. Maksimov, Numerical simulation of the coal combustion process initiated by a plasma source, Thermophysics and Aeromechanics, 2014, Vol. 21, No. 6, P. 747–754.

    Article  ADS  Google Scholar 

  5. A.S. Askarova, S.A. Bolegenova, S. Bolegenova, A. Bekmukhamet, V. Maximov, and M. Beketayeva, Numerical experimenting of combustion in the real boiler of CHP, Int. J. Mech., 2013, Vol. 7, P. 343–352.

    Google Scholar 

  6. BP statistical review of world energy [Electronic resource], https://www.bp.com/statisticalreview.

  7. V.E. Messerle, A.B. Ustimenko, A.S. Askarova, and A.O. Nagibin, Pulverized coal torch combustion in a furnace with plasma-coal system, Thermophysics and Aeromechanics, 2010, Vol. 17, No. 3, P. 435–444.

    Article  ADS  Google Scholar 

  8. A.S. Askarova, V.E. Messerle, A.B. Ustimenko, S.A. Bolegenova, V.Yu. Maximov, and Z.Kh. Gabitova, Numerical simulation of pulverized coal combustion in a power boiler furnace // High Temp., 2015, Vol. 53, No. 3, P. 445–452.

    Article  Google Scholar 

  9. M. Gorokhovski, A. Chtab-Desportes, I. Voloshina, and A. Askarova, Stochastic simulation of the spray formation assisted by a high pressure, in: 6th Intern. Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion. Book Series: AIP Conference Proceedings, 2010, Vol. 1207, P. 66–73.

    ADS  Google Scholar 

  10. S.V. Alekseenko, D.M. Markovich, V.M. Dulin, and L.M. Chikishev, Study of vortex core precession in combustion chamber, Thermophysics and Aeromechanics, 2013, Vol. 20, No. 6, P. 679–686.

    Article  ADS  Google Scholar 

  11. A.S. Askarova, A. Bekmukhamet, S.A. Bolegenova, M.T. Beketayeva, V.Yu. Maximov, Sh.S. Ospanova, and Z.K. Gabitova, Numerical modeling of turbulence characteristics of burning process of the solid fuel in BKZ-420-140-7c combustion chamber, Int. J. Mech., 2014, Vol. 8, P. 112–122.

    Google Scholar 

  12. R. Leithner, Energy conversion processes with intrinsic CO2 separation, Trans. Soc. Mining, Metallurgy and Exploration, 2005, Vol. 18, P. 135–145.

    Google Scholar 

  13. A.V. Gil and A.V. Starchenko, Influence of the internal moisture of coals on the temperature level in the furnaces of power-plant boilers, in: Thermophysical Foundations of Power Engineering Technologies: a Collection of Scientific Works of the All-Russian Scientific and Practical Conf. With International Participation, 24–26 June 2010, Tomsk, P. 226–233.

  14. A.P. Burdukov, V.I. Popov, and V.A. Faleev, Study of mechanically activated coal combustion, Thermal Sci., 2009, Vol. 13, Iss. 1, P. 127–138.

    Article  Google Scholar 

  15. S.V. Alekseenko, I.S. Anufriev, M.S. Vigriyanov, V.M. Dulin, E.P. Kopyev, and O.V. Sharypov, Steam-enhanced regime for liquid hydrocarbons combustion: velocity distribution in the burner flame, Thermophysics and Aeromechanics, 2014, Vol. 21, No. 3, P. 393–396.

    Article  ADS  Google Scholar 

  16. A.S. Askarowa and M.A. Buchmann, Structure of the flame of fluidized-bed burners and combustion processes of high-ash coal, in: 18th Dutch-German Conf. on Flames, Germany, 1997, Vol. 1313, P. 241–244.

    Google Scholar 

  17. V.I. Polezhaev and A.V. Bune, Mathematical Modeling of Convective Heat and Mass Exchange Based on the Navier—Stokes equations, Nauka, Moscow, 1987.

    Google Scholar 

  18. B.E. Launder and D.B. Spalding, The numerical computation of turbulent flows, Comp. Methods Appl. Mech. Eng., 1974, Vol. 3, P. 269–289.

    Article  MATH  Google Scholar 

  19. M.Yu. Chernetskiy, V.A. Kuznetsov, A.A. Dekterev, N.A. Abaimov, and A.F. Ryzhkov, Comparative analysis of turbulence model effect on description of the processes of pulverized coal combustion at flow swirl, Thermophysics and Aeromechanics, 2016, Vol. 23, No. 4, P. 615–626.

    Article  Google Scholar 

  20. L.D. Smoot and P.J. Smith, Coal combustion and gasification, Springer, U.S.A., 1985.

    Book  Google Scholar 

  21. A.V. Gil, A.V. Starchenko, and A.S. Zavorin, Application of Numerical Simulation of Furnace Processes for the Practice of Boilers Adaption to Off-design Fuel, STT, Tomsk, 2011.

    Google Scholar 

  22. C.T. Crowe, M.P. Sharma, and D.E. Stock, The particle source in cell (PSI Cell) model for gas droplet flows, Trans. ASME J. Fluids Engng, 1977, Vol. 99, P. 325–332.

    Article  ADS  Google Scholar 

  23. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Corp., New York, 1980.

    MATH  Google Scholar 

  24. A.S. Askarova, V.E. Messerle, A.B. Ustimenko, S.A. Bolegenova, S.A. Bolegenova, V.Yu. Maximov, and A.B. Yergalieva, Reduction of noxious substance emissions at the pulverized fuel combustion in the combustor of the BKZ-160 boiler of the Almaty heat electropower station using the “Overfire Air” technology, Thermophysics and Aeromechanics, 2016, Vol. 23, No. 1, P. 125–134.

    Article  ADS  Google Scholar 

  25. R.J. Harmor, Kinetics of combustion of pulverized brown coal char, Combust. Flame, 1973, No. 21, P. 153–162.

    Article  Google Scholar 

  26. R.B. Edelman and O.F. Fortune, A quasi-global chemical kinetic model for the finite rate combustion of hydrocarbon fuels with application to turbulent burning and mixing in hypersonic engines and nozzles, AIAA 7th Aerospace Sciences Meeting, AIAA Paper, 1969, No. 69–86.

  27. B.F. Magnussen, On the mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, in: Works 16th Int. Symp. on Combustion, Pittsburgh, 1976, P. 719–729.

  28. M.A. Field, D.W. Gill, B.B. Morgan, and P.G.W. Hawksley, Combustion of pulverized coal. England: BCURA. Leatherhead, Surrey, 1967, P. 155–174.

    Google Scholar 

  29. K. Görner, Technische Verbrennungssysteme — Grundlagen, Modellbildung, Simulation, Springer-Verlag, Berlin, Heidelberg, 1991.

    Book  Google Scholar 

  30. V.V. Salomatov, D.V. Krasinskii, Yu.A. Anikin, I.S. Anufriev, O.V. Sharypov, and Kh. Enhzhargal, Experimental and numerical investigation of aerodynamic characteristics of swirling flows in a model of the swirling-type furnace, J. Engng Phys. Thermophys., 2012, Vol. 85, No. 2, P. 282–293.

    Article  ADS  Google Scholar 

  31. A.S. Askarova, E.I. Karpenko, V.E. Messerle, and A.B. Ustimenko, Plasmachemical activation of the combustion of solid fuels, Khimiya vysokih energy, 2006, Vol. 40, No. 2, P. 141–148.

    Google Scholar 

  32. S. Vockrodt, R. Leithner, A. Schiller, A. Askarowa, and M. Buchman, Firing technique measures for increased efficiency and minimization of toxic emissions in Kasakh coal firing, in: 19th German Conf. on Flames, Germany, 1999, Vol. 1492, P. 93–97.

    Google Scholar 

  33. A.S. Askarova, S.A. Bolegenova, V.Yu. Maximov, A. Bekmukhamet, M.T. Beketaeva, and Z.Kh. Gabitova, Computational method for investigation of solid fuel combustion in combustion chambers of a heat power plant, High Temperature, 2015, Vol. 53, No. 5, P. 751–757.

    Article  Google Scholar 

  34. A.S. Askarova, E.I. Karpenko, Yu.E. Karpenko, V.E. Messerle, and A.B. Ustimenko, Mathematical modeling of the processes of solid fuel ignition and combustion at combustors of the power boilers, in: 7th Int. Fall Seminar on Propellants, Explosives and Pyrotechnics. Theory and Practice of Energetic Materials, China, 2007, Vol. 7, P. 672–683.

    Google Scholar 

  35. A.S. Askarova, A. Bekmukhamet, S. Bolegenova, Sh. Ospanova, B. Symbat, V. Maximov, M. Beketayeva, and A. Ergalieva, 3D modeling of heat and mass transfer during combustion of solid fuel in BKZ-420-140-7c combustion chamber of Kazakhstan, J. Appl. Fluid Mech., 2016, Vol. 9, No. 2, P. 699–709.

    Article  Google Scholar 

  36. F.A. Serant, V.V. Gordeev, Yu.M. Salomasov, V.F. Konyashkin, A.R. Kvrivishvili, E.G. Bartashuk, and A.V. Shikhotdinov, Two-stage combustion of a high-ash Ekibastuz coal on the modernized boiler PK-39-2M of power-plant unit 325 MW (st. No. 2) of the power plant of Joint-Stock Comp. “EEK”, town of Aksu (Kazakhstan), in: VIII All-Russian Conf. with Intern. Participation “Solid Fuel Combustion”, 13–16 November 2012, Novosibirsk, 2012, P. 92.1–92.9.

  37. R. Viskanta and M.P. Mengüc, Radiation heat transfer in combustion systems, Prog. Energy Combustion Sci., 1987, No. 13, P. 97–160.

    Article  ADS  Google Scholar 

  38. A. de Marco and F. Lockwood, A new flux model for the calculation of radiation furnaces, Italian Flame Days, Sanremo, 1975, P. 1–13.

    Google Scholar 

  39. F. Lockwood and N. Shah, An improved flux model for calculation of radiation heat transfer in combustion chambers, ASME-Paper. Salt Lake City, 1976, P. 2–7.

  40. V.V. Mitor, N.V. Kuznetsov, I.E. Dubovitsky, and E.S. Karasina, Thermal Computation of Boiler Aggregates: Normative Method, Energiya, Moscow, 1973.

    Google Scholar 

  41. B.K. Aliyarov and M.B. Aliyarova, Combustion of Kazakhstan Coals on the TPS and on Large Boiler rooms: Experience and Prospects, Almaty, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Maximov.

Additional information

The work was carried out within the framework of projects financially supported by the Ministry of Education and Science of the Kazakhstan Republic (Grants Nos. AP05133590, AP05132988, and BR05236730).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askarova, A.S., Bolegenova, S.A., Bolegenova, S.A. et al. 3D modeling of the aerodynamics and heat transfer in the combustion chamber of the BKZ-75 boiler of the Shakhtinsk cogeneration plant. Thermophys. Aeromech. 26, 295–311 (2019). https://doi.org/10.1134/S0869864319020124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864319020124

Key words

Navigation