Skip to main content
Log in

Effect of Brownian motion on flow and heat transfer of nanofluids over a backward-facing step with and without adiabatic square cylinder

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

A mathematical model to predict large enhancement of thermal conductivity of nanofluids by considering the Brownian motion is proposed. The effect of the Brownian motion on the flow and heat transfer characteristics is examined. The computations were done for various types of nanoparticles such as CuO, Al2O3, and ZnO dispersed in a base fluid (water), volume fraction of nanoparticles ϕ in the range of 1 % to 6 % at a fixed Reynolds number Re = 450 and nanoparticle diameter dnp = 30 nm. Our results demonstrate that Brownian motion could be an important factor that enhances the thermal conductivity of nanofluids. Nanofluid of Al2O3 is observed to have the highest Nusselt number Nu among other nanofluids types, while nanofluid of ZnO nanoparticles has the lowest Nu. Effects of the square cylinder on heat transfer characteristics are significant with considering Brownian motion. Enhancement in the maximum value of Nu of 29 % and 26 % are obtained at the lower and the upper walls of the channel, respectively, by considering the Brownian effects, with square cylinder, compared with that in the case without considering the Brownian motion. On the other hand, results show a marked improvement in heat transfer compared to the base fluid, this improvement is more pronounced on the upper wall for higher ϕ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.F. Armaly, F. Durst, J.C.F. Pereira, and B. Schönung, Experimental and theoretical investigation of back–ward–facing step flow, J. Fluid Mech., 1983, vol. 127, p. 473–496.

    Article  ADS  Google Scholar 

  2. D.K. Gartling, A test problem for outflow boundary condition–flow over a backward facing step, Int. J. Numer. Methods in Fluids, 1990, vol. 11, p. 953–967.

    Article  ADS  Google Scholar 

  3. G.C. Vradis, V. Outgen, and J. Sanchez, Heat transfer over a backward–facing step: solutions to a benchmark, in: Benchmark Problems for Heat Transfer Codes. ASME, 1992, vol. 222, p. 27–34.

    Google Scholar 

  4. D. Barkeley, M.G. Gomes, and R.D. Henderson, Three–dimensional instability in flow over a backward–facing step, J. Fluid Mech., 2002, vol. 473, p. 167–190.

    ADS  MathSciNet  MATH  Google Scholar 

  5. M. Ramšak and L.A. Škerget, Subdomain boundary element method for high–Reynolds laminar flow using stream function–vorticity formulation, Int. J. Numer. Methods in Fluids, 2004, vol. 46, p. 815–847.

    Article  ADS  MATH  Google Scholar 

  6. C.E. Tinney and E.L.S. Ukeiley, A study of a 3–D double backward–facing step, Experiments in Fluids, 2009, vol. 47, p. 427–439.

    Article  ADS  Google Scholar 

  7. H.I. Abu–Mulaweh, A review of research on laminar mixed convection flow over backward and forward–facing steps, Int. J. Thermal Sci., 2003, vol. 42, p. 897–909.

    Article  Google Scholar 

  8. E. Abu–Nada, Application of nanofluids for heat transfer enhancement of separated flows encountered in a back–ward facing step, Int. J. Heat Fluid Flow, 2008, vol. 29, p. 242–249.

    Article  Google Scholar 

  9. H. Demir, A.S. Dalkilic, N.A. Kurekci, W. Duangthongsuk, and S. Wongwises, Numerical investigation on the single phase forced convection heat transfer characteristics of TiO2 nanofluids in a double–tube counter flow heat exchanger, Int. Communs. in Heat Mass Transfer, 2010, vol. 38, no. 2, p. 218–228.

    Article  Google Scholar 

  10. A.Sh. Kherbeet, H.A. Mohammed, and B.H. Salman, The effect of nanofluids flow on mixed convection heat transfer over microscale backward–facing step, Int. J. Heat Mass Transfer, 2012, vol. 55, p. 5870–5881.

    Article  Google Scholar 

  11. Y.L. Tsay, T. Chang, and J. Cheng, Heat transfer enhancement of backward–facing step flow in a channel by using baffle installation on the channel wall, Acta Mech., 2005, vol. 174, no. 1, p. 63–76.

    Article  MATH  Google Scholar 

  12. C.K. Chen, T.S. Yen, and Y.T. Yang, Lattice Boltzmann method simulation of a cylinder in the backward–facing step flow with the field synergy principle, Int. J. Thermal Sci., 2006, vol. 45, p. 982–989.

    Article  Google Scholar 

  13. C. Berner, F. Durst, and D.M. McEligot, Streamwise–periodic flow around baffles, in: Proc. 2nd Inter. Conf. on Applications of Laser Anemometry to Fluid Mechanics, Lisbon, Portugal, 1984, P. 14–15.

    Google Scholar 

  14. B. Asad, A. Seyyed, N. Gandjalikhan, and H. Maliheh, Effects of baffle on entropy generation in separated convection flow adjacent to inclined backward–facing step, J. Electronics Cooling and Thermal Control, 2012. Vol. 2, P. 53–61.

    Article  Google Scholar 

  15. H.A. Mohammed, O.A. Alawi, and M.A. Wahid, Mixed convective nanofluid flow in a channel having back–ward–facing step with a baffle, Powder Technology, 2015, vol. 275, p. 329–343.

    Article  Google Scholar 

  16. T. Hussein, Laminar CuO–water nano–fluid flow and heat transfer in a backward–facing step with and without obstacle, Appl. Nanoscience, 2015, Vol. 6, Iss. 3, P. 371–378.

    Google Scholar 

  17. Y. Xuan, Q. Li, and W. Hu, Aggregation structure and thermal conductivity of nanofluids, AIChE J., 2003, vol. 49, no. 4, p. 1038–1043.

    Article  Google Scholar 

  18. S.P. Jangand and S.U.S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., 2004, vol. 84, no. 21, p. 4316–4318.

    Article  ADS  Google Scholar 

  19. D.H. Kumar, H.E. Patel, V.R.R. Kumar, T. Sundararajan, T. Pradeep, and S.K. Das, Model for heat conduc–tion in nanofluids, Phys. Review Lett., 2004, vol. 93, no. 14, p. 144301–1–144301–4.

    Article  ADS  Google Scholar 

  20. J. Koon and C. Kleinstreuer, A new thermal conductivity model for nanofluids, J. Nanoparticle Res., 2004, vol. 6, no. 6, p. 577–588.

    Article  ADS  Google Scholar 

  21. R. Prasher, P. Bhattacharya, and P.E. Phelan, Thermal conductivity of nanoscale colloidal solutions (nano–fluids), Phys. Review Lett., 2005, vol. 94, no. 2, p. 1–4.

    Article  Google Scholar 

  22. S.M.S. Murshed, K.C. Leong, and C. Yang, A combined model for the effective thermal conductivity of nano–fluids, Appl. Thermal Engng, 2009, vol. 29, p. 2477–2483.

    Article  Google Scholar 

  23. J.C. Maxwell, A Treatise on Electricity and Magnetism. Vol. II, Oxford University Press, Cambridge, UK, 1873, P. 54.

    MATH  Google Scholar 

  24. R.L. Hamilton and O.K. Crosser, Thermal conductivity of heterogeneous twocomponent systems, Industrial and Engng Chemistry Fundamentals, 1962, vol. 1, no. 3, p. 187–191.

    Article  Google Scholar 

  25. K. Khanafer, K. Vafaiand, and M. Lightstone, Buoyancy–driven heat transfer enhancement in a two–dimen–sional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 2003, vol. 46, p. 3639–3653.

    Article  MATH  Google Scholar 

  26. F.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Fundamentals of Heat and Mass Transfer. 6th edn, John Wiley & Sons, Hoboken, NJ, 2007.

    Google Scholar 

  27. R.S. Vajjha, D.K. Das, and D.P. Kulkarni, Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids, Int. J. Heat Mass Transfer, 2010, vol. 53, p. 4607–4618.

    Article  Google Scholar 

  28. N. Masoumi, N. Sohrabi, and A. Behzadmehr, A new model for calculating the effective viscosity of nanofluids, J. Phys. D. Appl. Phys, 2009, vol. 42, no. 5, p. 055501–1–055501–6.

    Article  ADS  Google Scholar 

  29. R.S. Vajjhaand and D.K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, Int. J. Heat Mass Transfer, 2009, vol. 52, p. 4675–4682.

    Article  MATH  Google Scholar 

  30. H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 1952. Vol. 20, P. 571–581.

    Article  ADS  Google Scholar 

  31. A. Sohankar, C. Norberg, and L. Davidson, Low–Reynolds number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition, Int. J. Numer. Methods in Fluids, 1998, vol. 26, p. 39–56.

    Article  ADS  MATH  Google Scholar 

  32. H. Abbassi, S. Turki, and S. Ben Nasrallah, Channel flow bluff–body: outlet boundary condition, vortex shed–ding and effects of buoyancy, Computational Mech., 2002, vol. 28, p. 10–16.

    ADS  MATH  Google Scholar 

  33. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Corp., New York, 1980.

    Book  MATH  Google Scholar 

  34. M.S. Valipoor, R. Masoodi, S. Rashidi, M. Bovand, and M. Mirhosseini, A numerical study on convection around a square cylinder using Al2O3–H2O nanofluid, Thermal Sci., 2014, vol. 18, no. 4, p. 1305–1314.

    Article  Google Scholar 

  35. H.A. Mohammed, A.A. Al–aswadi, M.Z. Yusoff, and R. Saidur, Buoyancy–assisted mixed convective flow over backward–facing step in a vertical duct using nanofluids, Thermophysics and Aeromechanics, 2012, vol. 19, no. 1, p. 33–52.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bouazizi.

Additional information

National Engineering School

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouazizi, L., Turki, S. Effect of Brownian motion on flow and heat transfer of nanofluids over a backward-facing step with and without adiabatic square cylinder. Thermophys. Aeromech. 25, 445–460 (2018). https://doi.org/10.1134/S0869864318030113

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864318030113

Key words

Navigation