Stratigraphy and Geological Correlation

, Volume 26, Issue 2, pp 157–178 | Cite as

Geochemical Features and Sources of Metasedimentary Rocks of the Western Part of the Tukuringra Terrane of the Mongol–Okhotsk Fold Belt

  • V. A. Zaika
  • A. A. Sorokin
  • B. Xu
  • A. B. Kotov
  • V. P. Kovach


This work presents the results of geological, geochemical, Sm–Nd isotope-geochemical studies of metasedimentary rocks of the Teploklyuchevskaya, Garmakan, and Algaja formations of the Tukuringra Terrane of the eastern part of the Mongol–Okhotsk fold belt, as well as U–Th–Pb geochronological (LA-ICP-MS) studies of detrital zircons from these rocks. It is established that the lower age boundary of formation of the protolith of metasedimentary rocks of the Teploklyuchevskaya Formation is about 243 Ma (Middle Triassic); those of the Garmakan and Algaja formations are ~175 Ma (Lower–Middle Jurassic boundary) and ~192 Ma (Lower Jurassic), respectively. This makes it possible to correlate the Teploklyuchevskaya, Garmakan, and Algaja formations with the youngest sedimentary complexes of the eastern part of the Mongol–Okhotsk fold belt. In terms of geochemistry, the protoliths of metasedimentary rocks of the above-mentioned formations are the most similar to sedimentary rocks of island arcs and active continental margins. The source terrigenous material was transported from the southern frame of the Mongol–Okhotsk fold belt. It is not improbable that Lower Mesozoic deposits of the western part of the Tukuringra Terrane, in particular, and the eastern part of the Mongol–Okhotsk fold belt, as a whole, are relics of residual basins, preserved in “gaps” in the collision zone between the southern margin of plates of the North Asian Craton and the Amur Superterrane.


metasedimentary rocks age detrital zircons Mesozoic Mongol–Okhotsk fold belt accretionary complex residual basin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhatia, M.R., Plate tectonics and geochemical composition of sandstones, J. Geol., 1983, vol. 91, no. 6, pp. 611–627.CrossRefGoogle Scholar
  2. Bhatia, M.R. and Crook, K.A.W., Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins, Contrib. Mineral. Petrol., 1986, vol. 92, pp. 181–193.CrossRefGoogle Scholar
  3. Black, L.P., Kamo, S.L., Allen, C.M., et al., Improved 206Pb/238U microprobe geochronology by the monitoring of trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards, Chem. Geol., 2004, vol. 205, pp. 115–140.CrossRefGoogle Scholar
  4. Buchko, I.V., Sorokin, A.A., Izokh, A.E., et al., Petrology of the Early Mesozoic ultramafic–mafic Luchina massif (southeastern periphery of the Siberian craton), Russ. Geol. Geophys., 2008, vol. 49, no. 8, pp. 570–581.CrossRefGoogle Scholar
  5. Buchko, I.V., Sorokin, A.A., Salnikova, E.B., et al., Triassic stage of mafic magmatism in the Dzhugdzhur-Stanovoi Superterrane (southern framework of the North Asian Craton), Russ. Geol. Geophys., 2010, vol. 51, no. 11, pp. 1157–1166.CrossRefGoogle Scholar
  6. Bussien, D., Gombojav, N., Winkler, W., and Quadt, A., The Mongol–Okhotsk Belt in Mongolia—an appraisal of the geodynamic development by the study of sandstone provenance and detrital zircons, Tectonophysics, 2011, vol. 510, pp. 132–150.CrossRefGoogle Scholar
  7. Condie, K.C., Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales, Chem. Geol., 1993, vol. 104, pp. 1–37.CrossRefGoogle Scholar
  8. Cullers, R.L., Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA, Chem. Geol., 2002, vol. 191, pp. 305–327.CrossRefGoogle Scholar
  9. Didenko, A.N., Kaplun, V.B., Malyshev, Yu.F., Shevchenko, B.F., Lithospheric structure and Mesozoic geodynamics of the eastern Central Asian orogen, Russ. Geol. Geophys., 2010, vol. 51, no. 5, pp. 492–506.CrossRefGoogle Scholar
  10. Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., and Ivanov, A.V., Late Paleozoic–Mesozoic subductionrelated magmatism at the southern margin of the Siberian continent and the 150-million-year history of the Mongolia–Okhotsk ocean, Asian J. Earth Sci., 2013, vol. 62, pp. 79–97.CrossRefGoogle Scholar
  11. Ge, W., Wu, F., Zhou, C., and Abde, R.A.A., Emplacement age of the Tahe granite and its constraints on the tec tonic nature of the Ergun block in the northern part of the Da Hinggan Range, Chinese Sci. Bull., 2005, vol. 50, pp. 2097–2105.CrossRefGoogle Scholar
  12. Gehrels, G., Detrital zircon U-Pb geochronology: current methods and new opportunities, in Tectonics of Sedimentary Basins: Recent Advances, Busby, C. and Perez, A.A., Eds., Wiley-Blackwell, 2011, pp. 47–62.Google Scholar
  13. Geodinamika, magmatizm i metallogeniya vostoka Rossii (Geodynamics, Magmatism, and Metallogeny of the East Russia), Khanchuk, A.I., Ed., Vladivostok: Dalnauka, 2006, Book 1 [in Russian].Google Scholar
  14. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematic of rivers water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.CrossRefGoogle Scholar
  15. Gusev, G.S. and Khain, V.E., On relations between the Baikal–Vitim, Aldan–Stanovoi, and Mongol–Okhotsk terranes (south of mid-Siberia), Geotektonika, 1995, no. 5, pp. 68–82.Google Scholar
  16. Halim, N., Kravchinsky, V., Gilder, S., et al., A palaeomagnetic study from the Mongol–Okhotsk region: rotated Early Cretaceous volcanics and remagnetized Mesozoic sediments, Earth Planet. Sci. Lett., 1998, vol. 159, nos. 3–4, pp. 133–145.CrossRefGoogle Scholar
  17. Han, G., Liu, Y., Neubauer, F., et al., Origin of terranes in the eastern Central Asian Orogenic Belt, NE China: U-Pb ages of detrital zircons from Ordovician–Devonian sandstones, North Da Xing’an Mts, Tectonophysics, 2011, vol. 511, pp. 109–124.CrossRefGoogle Scholar
  18. Herron, M.M., Geochemical classification of terrigenous sands and shales from core or log data, J. Sediment. Petrol., 1988, vol. 58, pp. 820–829.Google Scholar
  19. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.CrossRefGoogle Scholar
  20. Kelty, T.K., Yin, A., Dash, B., et al., Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay–Hentey basin, north-central Mongolia: implications for the tectonic evolution of the Mongol–Okhotsk Ocean in central Asia, Tectonophysics, 2008, vol. 451, pp. 290–311.CrossRefGoogle Scholar
  21. Kirillova, G.A. and Turbin, M.T., Formatsii i tektonika Dzhagdinskogo zvena Mongolo-Okhotskoi skladchatoi oblasti (Formations and Tectonics of the Dzhagdy Link, Mongol–Okhotsk Fold Area), Moscow: Nauka, 1979 [in Russian].Google Scholar
  22. Kotov A.B., Velikoslavinskii, S.D., Kovach, V.P., et al., Paleoproterozoic age of the Zeya Group, Stanovoy Complex of the Dzhugdzhur–Stanovoy superterrane (Central Asian mobile belt): Results of Sm–Nd isotopic and U–Th–Pb geochronological (LA-ICP-MS) analyses, Dokl. Earth Sci., 2016, vol. 471, no. 2, pp. 1234–1237.Google Scholar
  23. Krasnyi, L.I. and Pen Yun’byao, Geologicheskaya karta Priamur’ya i sopredel’nykh territorii. Masshtab 1:2500000 (The 1:2500000 Geological Map of the Amur Region and Adjacent Areas), St. Petersburg: Vseross. Nauchno-Issled. Geol. Inst., 1999 [in Russian].Google Scholar
  24. Kravchinsky, V.A. and Sorokin A.A. Paleomagnetism of Devonian rocks in the Ol’doi terrane, Upper Amur Region, Dokl. Earth Sci., 2001, vol. 377, no. 2, pp. 147–151.Google Scholar
  25. Kravchinsky, V.A., Sorokin, A.A., and Courtillot, V., Paleomagnetism of Paleozoic and Mesozoic sediments of southern margin of Mongol–Okhotsk Ocean, Far East of Russia, J. Geophys. Res., 2002, vol. 107, no. B-10, pp. 1–22.Google Scholar
  26. Kuz’min, M.I. and Kravchinskii, V.A., First paleomagnetic data on the Mongol–Okhotsk Belt, Geol. Geofiz., 1996, vol. 37, no. 1, pp. 54–62.Google Scholar
  27. Larin, A.M., Kotov, A.B., Sal’nikova, E.B., et al., Age and tectonic position of granites and volcanics in the eastern margin of the Selenga–Vitim volcano-plutonic belt, Dokl. Earth Sci., 2011, vol. 441, no. 1, pp. 1502–1507.CrossRefGoogle Scholar
  28. Ludwig, K.R., Isoplot/Ex.Version 2.06. A Geochronological Toolkit for Microsoft Excel, Berkley Geochronol. Center Spec. Publ., 1999, no. 1a.Google Scholar
  29. Mamontov, Yu.A., Geologicheskaya karta SSSR. Masshtab 1: 200000. Seriya Amuro-Zeiskaya. N-52-KhKh (The 1: 200000 Geological Map of the USSR. Ser. Amur–Zeya. Sheet N-52-XX), Krasnyi, L.I., Ed., Leningrad: Vseross. Nuchno-Issled. Geol. Inst., 1968 [in Russian].Google Scholar
  30. McDonough, W.F. and Sun, S-s., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.CrossRefGoogle Scholar
  31. Meng, E., Xu, W.L., Pei, F.P., et al., Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China: implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic belt, Tectonophysics, 2010, vol. 485, pp. 42–51.CrossRefGoogle Scholar
  32. Metelkin, D.V., Gordienko, I.V., Zhao, X., Paleomagnetism of Early Cretaceous volcanic rocks from Transbaikalia: argument for Mesozoic strike-slip motions in Central Asian structure, Russ. Geol. Geophys., 2004, vol. 45, no. 12, pp. 1349–1363.Google Scholar
  33. Metelkin, D.V., Gordienko, I.V., and Klimuk, V.S., Paleomagnetism of Upper Jurassic basalts from Transbaikalia: new data on the time of closure of the Mongol-Okhotsk Ocean and Mesozoic intraplate tectonics of Central Asia, Russ. Geol. Geophys., 2007, vol. 48, no. 10, pp. 825–834.CrossRefGoogle Scholar
  34. Natal’in, B.A., Mesozoic accretion and collision tectonics of the south Far East of the USSR, Tikhookean. Geol., 1991, no. 5, pp. 3–23.Google Scholar
  35. Natal’in, B.A., History and modes of Mesozoic accretion in southeastern Russia, The Island Arc, 1993, vol. 2, pp. 15–34.CrossRefGoogle Scholar
  36. Nokleberg, W.J., Bundtzen, T.K., Eremin, R.A., et al., Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera, U.S. Geol. Surv. Prof. Pap., 2005, no. 1697.Google Scholar
  37. Paces, J.B. and Miller, J.D., Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System, J. Geophys. Res., 1993, vol. 98, no. B8, pp. 13997–14013.CrossRefGoogle Scholar
  38. Parfenov, L.M., Nokleberg, W.J., Khanchuk, A.I., Principles of composition and the main divisions of the legend for the geodynamic map of Northern and Central Asia, the south of the Russian Far East, Korea and Japan, Tikhookean. Geol., 1998, vol. 17, no. 3, pp. 3–13.Google Scholar
  39. Parfenov, L.M., Popeko, L.I., Tomurtogoo, O., The Problems of Tectonics of Mongol–Okhotsk Orogenic Belt, Russ. J. Pac. Geol., 1999, vol. 18, no. 5, pp. 24–43.Google Scholar
  40. Parfenov, L.M., Berzin, N.A., Khanchuk, A.I., et al., Model for the formation of orogenic belts in Central and Northeast Asia, Tikhookean. Geol., 2003, vol. 22, no. 6, pp. 7–41.Google Scholar
  41. Pettijohn, F.J., Potter, P.E., and Slever, R., Sand and Sandstone, Berlin, 1972.Google Scholar
  42. Pisarevsky, S.A., New edition of the global paleomagnetic database, EOS Trans., 2005, vol. 86.Google Scholar
  43. Renne, P.R., Swisher, C.C., Deino, A.L., et al., Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating, Chem. Geol., 1998, vol. 45, pp. 117–152.CrossRefGoogle Scholar
  44. Sal’nikova, E.B., Larin, A.M., Kotov, A.B., et al., The Tok–Algoma igneous complex of the Dzhugdzhur–Stanovoi folded region: age and geodynamic setting, Dokl. Earth Sci., 2006, vol. 409, no. 6, pp. 888–892.CrossRefGoogle Scholar
  45. Sal’nikova, E.B., Kotov, A.B., Kovach, V.P., et al., Age of the Gonzha Group (Argun Terrane, Central Asian Fold Belt) inferred from U-Pb and Lu-Hf zircon data, Dokl. Earth Sci., 2012, vol. 444, no. 2, pp. 692–695.CrossRefGoogle Scholar
  46. Serezhnikov, A.N. and Volkova, Yu.R., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1: 1000000. Tret’e pokolenie. List N-52 (Zeya). Dal’nevostochnaya seriya (The 1: 1000000 State Geological Map of the Russian Federation, 3rd ed. Sheet N-52 (Zeya). Explanatory Note), Vol’skii, A.S., Ed., Vseross. Geol. Razved. Inst., St. Petersburg, 2007 [in Russian].Google Scholar
  47. Smirnova, Yu.N., Sorokin, A.A., Kotov, A.B., Kovach, V.P., Sources of the Jurassic terrigenous rocks of the Upper Amur and Zeya–Dep troughs of the eastern part of the Central Asian fold belt: Results of Sm–Nd isotopic–geochemical and U–Pb (LA-ICP-MS) geochronological studies, Dokl. Earth Sci., 2015, vol. 465, no. 2, pp. 1224–1228.CrossRefGoogle Scholar
  48. Smirnova, Yu.N., Sorokin, A.A., Popeko, L.I., et al., Geochemistry and provenances of the Jurassic terrigenous rocks of the Upper Amur and Zeya–Dep troughs, eastern Central Asian fold belt, Geochem. Int., 2017, vol. 55, no. 2, pp. 163–183.CrossRefGoogle Scholar
  49. Sorokin, A.A., Paleozoic accretionary complexes in the eastern segments of the Mongolia–Okhotsk Foldbelt, Tikhookean. Geol., 2001, vol. 20, no. 6, pp. 31–36.Google Scholar
  50. Sorokin, A.A., Kudryashov, N.M., Sorokin, A.P., Fragments of Paleozoic active margins at the southern periphery of the Mongolia-Okhotsk Foldbelt: evidence from the Northeastern Argun Terrane, Amur River region, Dokl. Earth Sci., 2002, vol. 387, no. 3, pp. 1038–1042.Google Scholar
  51. Sorokin, A.A., Kudryashov, N.M., Sorokin, A.P., et al., Geochronology, geochemistry, and geodynamic setting of Paleozoic granitoids in the eastern segment of Mongol–Okhotsk Belt, Dokl. Earth Sci., 2003, vol. 393, no. 8, pp. 1136–1140.Google Scholar
  52. Sorokin, A.A., Kotov, A.B., Kudryashov, N.M., Kovach, V.P., Late Paleozoic Urusha magmatic complex in the southern framing of the Mongolia-Okhotsk Belt (Amur Region): age and geodynamic setting, Petrology, 2005, vol. 13, no. 6, pp. 596–610.Google Scholar
  53. Sorokin, A.A., Kotov, A.B., Sal’nikova, E.B., et al., Early Paleozoic gabbro-granitoid associations in eastern segment of the Mongolian-Okhotsk foldbelt (Amur River basin): age and tectonic position, Stratigr. Geol. Correl., 2007, vol. 15, no. 3, pp. 241–257.CrossRefGoogle Scholar
  54. Sorokin, A.A., Kolesnikov, A.A., Kotov, A.B., Kovach, V.P., Areas and sources of Paleozoic metaterrigenous rocks of the Yankan terrane in the Mongolia-Okhotsk foldbelt: Evidence from the Sm-Nd isotope-geochemical studies, Dokl. Earth Sci., 2014a, vol. 454, no. 2, pp. 204–207.CrossRefGoogle Scholar
  55. Sorokin, A.A., Kotov, A.B., Kovach, V.P., et al., Sources of the Late Mesozoic magmatic associations in the northeastern part of the Amurian Microcontinent, Petrology, 2014b, vol. 22, no. 1, pp. 65–76.CrossRefGoogle Scholar
  56. Sorokin, A.A., Kolesnikov, A.A., Kotov, A.B., et al., Sources of detrital zircons from terrigenous deposits in the Yankan terrane of the Mongolian-Okhotsk mobile belt, Dokl. Earth Sci., 2015a, vol. 462, no. 2, pp. 621–625.CrossRefGoogle Scholar
  57. Sorokin, A.A., Smirnova, Yu.N., Kotov, A.B., et al., Provenances of the Paleozoic terrigenous sequences of the Oldoi terrane of the Central Asian Orogenic Belt: Sm-Nd isotope geochemistry and U-Pb geochronology (LA-ICP-MS), Geochem. Int., 2015, vol. 53, no. 6, pp. 534–544.CrossRefGoogle Scholar
  58. Sun, D.Y., Gou, J., Wang, T.H., et al., Geochronological and geochemical constraints on the Erguna massif basement, NE China–-subduction history of the Mongol–Okhotsk oceanic crust, Int. Geol. Rev., 2013, vol. 55, no. 14, pp. 1801–1816.CrossRefGoogle Scholar
  59. Tang, J., Xu, W., Wang, F., et al., Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna massif, NE China: petrogenesis and implications for the breakup of the rodinia supercontinent, Precambrian Res., 2013, vol. 224, pp. 597–611.CrossRefGoogle Scholar
  60. Tang, J., Xu, W.L., Wang, F., et al., Mesozoic southward subduction history of the Mongol–Okhotsk oceanic plate: evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna massif, NE China, Gondwana Res., 2016, vol. 31, pp. 218–240.CrossRefGoogle Scholar
  61. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Composition and Evolution, Blackwell Sci. Publ., 1985.Google Scholar
  62. Tsygankov, A.A., Litvinovsky, B.A., Jahn, B.M., et al., Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data), Russ. Geol. Geophys., 2010, vol. 51, no. 9, pp. 972–994.CrossRefGoogle Scholar
  63. Velikoslavinskii, S.D., Kotov, A.B., Sal’nikova, E.B., et al., Age of Ilikan Sequence from the Stanovoi complex of the Dzhugdzhur–Stanovoi superterrane, Central-Asian Foldbelt, Dokl. Earth Sci., 2011, vol. 438, no. 1, pp. 612–616.CrossRefGoogle Scholar
  64. Velikoslavinskii, S.D., Kotov, A.B., Salnikova, E.B., et al., Metabasalts of the Bryanta sequence of the Stanovoi complex of the Dzhugdzhur-Stanovoi superterrane, Central Asian fold belt: Age and geodynamic environment of formation, Petrology, 2012a, vol. 20, no. 3, pp. 240–254.CrossRefGoogle Scholar
  65. Velikoslavinskii, S.D., Kotov, A.B., Salnikova, E.B., et al., Age of the Ust’-Gilyui sequence in the Stanovoi Complex of the Selenga-Stanovoi Superterrain, Central Asian fold belt, Dokl. Earth Sci., 2012b, vol. 444, no. 2, pp. 661–665.CrossRefGoogle Scholar
  66. Velikoslavinskii, S.D., Kotov, A.B., Kovach, V.P., et al., The Paleoproterozoic age of protoliths of metasedimentary rocks of the Sutam formation of the Aldan granulite-gneiss megacomplex (Stanovoi suture), Dokl. Earth Sci., 2015, vol. 463, no. 2, pp. 765–769.CrossRefGoogle Scholar
  67. Velikoslavinskii, S.D., Kotov, A.B., Kovach, V.P., et al., Age, sources, and provenances of protoliths of metasedimentary rocks of the Dzheltulak group, Dzheltulak suture, Dokl. Earth Sci., 2016a, vol. 468, no. 2, pp. 545–548.CrossRefGoogle Scholar
  68. Velikoslavinskii, S.D., Kotov, A.B., Kovach, V.P., et al., Mesozoic age of the Gilyui Metamorphic Complex in the junction zone of the Selenga–Stanovoi and Dzhugdzhur–Stanovoi superterranes, Central Asian fold belt, Dokl. Earth Sci., 2016b, vol. 468, no. 2, pp. 561–565.CrossRefGoogle Scholar
  69. Wasserburg, G.J., Jacobsen, S.B., De Paolo, D.J., et al., Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions, Geochim. Cosmochim. Acta, 1981, vol. 45, pp. 2311–2323.CrossRefGoogle Scholar
  70. Whitehouse, M.J., Kamber, B.S., and Moorbath, S., Age significance of U–Th–Pb zircon data from Early Archaean rocks of west Greenland—a reassessment based on combined ion-microprobe and imaging studies, Chem. Geol., 1999, vol. 160, no. 3, pp. 201–224.CrossRefGoogle Scholar
  71. Wu, F.Y., Sun, D.Y., and Ge, W.C., Geochronology of the Phanerozoic granitoids in northeastern China, J. Asian Earth Sci., 2011, vol. 41, pp. 1–30.CrossRefGoogle Scholar
  72. Zhao, X.X., Coe, R.S., Zhou, Y., et al., Tertiary paleomagnetism of North and South China: a reappraisal of Late Mesozoic paleomagnetic data from Eurasia: implications for the Cenozoic tectonic history of Asia, Tectonophysics, 1994, vol. 235, pp. 181–203.CrossRefGoogle Scholar
  73. Zhao, X.X., Coe, R.S., Gilder, S.A., and Frost, G.M., Paleomagnetic constraints on the paleogeography of china: implication for Gondwanaland, Aust. J. Earth Sci., 1996, vol. 43, pp. 634–672.CrossRefGoogle Scholar
  74. Zubkov, V.F. and Turbin, M.T., Geologicheskaya karta regiona BAM. Masshtab 1:500 000. N-52-G (The 1: 500000 Geological Map of the BAM Region. N-52-G), Zolotov, M.G., Ed., Leningrad. Vseross. Nauchno-Issled. Geol. Inst., 1984a [in Russian].Google Scholar
  75. Zubkov, V.F. and Vol’skii, A.S., Geologicheskaya karta regiona BAM. Masshtab 1: 500000. N-52-V (The 1: 500000 Geological Map of the BAM Region. N-52-V), Zubkov, V.F., Ed., Leningrad. Vseross. Nauchno-Issled. Geol. Inst., 1984b [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Zaika
    • 1
  • A. A. Sorokin
    • 1
  • B. Xu
    • 2
  • A. B. Kotov
    • 3
  • V. P. Kovach
    • 3
  1. 1.Institute of Geology and Nature Management, Far Eastern BranchRussian Academy of SciencesBlagoveshchenskRussia
  2. 2.Peking UniversityBeijingChina
  3. 3.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations