Advertisement

Stratigraphy and Geological Correlation

, Volume 26, Issue 2, pp 121–138 | Cite as

Early Stages of the Evolution of Uralides as Evidenced from the U–Pb Systematics of Detrital Zircons from Rift Complexes

  • A. V. Maslov
  • G. A. Petrov
  • Yu. L. Ronkin
Article
  • 30 Downloads

Abstract

The U–Pb isotope data and corresponding ages of detrital zircons from rocks of the basal complexes of the Uralides of different segments of the Ural Fold Belt are considered. It was established that complexes of ancient domains of the East European Platform (Volga-Uralia, Sarmatia, Kola, etc.) seem to have been the main provenance areas of the clastic material for the Southern, Middle, and Northern Urals. This means that there were relatively remote and local (igneous formations of the pre-Uralides) provenance areas. Rift rock associations of the Uralides of the Subpolar and Polar Urals were formed mainly through erosion of local provenance areas (predominantly, Late Riphean–Vendian island-arc and orogenic magmatic complexes of the Proto-Uralides–Timanides). Detrital zircons of Riphean age dominate in rocks of the basal complexes of the Uralides. A source for them could have been rock complexes of Svecofennian-Norwegian Orogen and Cadomides of the Scythian-Turan Plate, intraplate magmatic formations, and metamorphic complexes, as well as blocks accreted to the margin of the East European Platform in the Late Precambrian–Cambrian and later detached and displaced during the Ordovician rifting and spreading. In general, the basal complexes of Uralides were formed owing to supply of clastic material from both remote and local sources. Despite the appearance of information of a totally new level (U–Pb isotope ages of detrital zircons, their Lu–Hf systematics, and the distribution features of rare earth and trace elements), the contribution of these sources to the formation of the Late Cambrian–Early Ordovician clastic strata is hardly possible at present to evaluate.

Keywords

U–Pb isotope ages of detrital zircons basal complexes of the Uralides the Urals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchison, J.C., Xia, X., Baxter, A.T., and Ali, J.R., Detrital zircon U–Pb ages along the Yarlung–Tsangpo suture zone, Tibet: implications for oblique convergence and collision between India and Asia, Gondwana Res., 2011, vol. 20, pp. 691–709.CrossRefGoogle Scholar
  2. Andersen, T., Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation, Chem. Geol., 2005, vol. 216, pp. 249–270.CrossRefGoogle Scholar
  3. Andreichev, V.L., Soboleva, A.A., Gehrels, G., U–Pb age of detrital zircons from the Upper Precambrian terrigenous section of North Timan, Dokl. Earth Sci., 2013, vol. 450, no. 2, pp. 592–596.CrossRefGoogle Scholar
  4. Antsygin, N.Ya., Shurygina M.V., and Nasedkina V.A., New data on the Paleozoic stratigraphy of the Northern Urals, in Geologicheskoe razvitie Urala: dostizheniya i problemy (Geological History of the Urals: Additional Appraisals and Problems), Moscow: Mingeo RSFSR, 1988, pp. 111–121.Google Scholar
  5. Bahlburg, H., Vervoort, J.D., DuFrane, S.A., et al., The U–Pb and Hf isotope evidence of detrital zircons of the Ordovician Ollantaytambo Formation, Southern Peru, and the Ordovician provenance and paleogeography of southern Peru and northern Bolivia, J. South Am. Earth Sci., 2011, vol. 32, pp. 196–209.CrossRefGoogle Scholar
  6. Barr, S.M., Davis, D.W., Kamo, S., and White, C.E., Significance of U–Pb detrital zircon ages in quartzite from peri-Gondwanan terranes, New Brunswick and Nova Scotia, Precambrian Res., 2003, vol. 126, pp. 123–145.CrossRefGoogle Scholar
  7. Bibikova, E.V., Bogdanova, S.V., Postnikov, A.V., et al., Sarmatia-Volgo-Uralia junction zone: Isotopic-geochronologic characteristic of supracrustal rocks and granitoids, Stratigr. Geol. Correl., 2009, vol. 17, no. 6, pp. 561–573.CrossRefGoogle Scholar
  8. Bibikova, E.V., Bogdanova, S.V., Postnikov, A.V., et al., The early crust of the Volgo-Uralian segment of the East European Craton: isotope-geochronological zirconology of metasedimentary rocks of the Bolshecheremshanskaya For mation and their Sm–Nd model ages, Stratigr. Geol. Correl., 2015, vol. 23, no. 1, pp. 1–23.CrossRefGoogle Scholar
  9. Bingen, B., Birkeland, A., Nordgulen, O., and Sigmond, E.M.O., Correlation of supracrustal sequences and origin of terranes in the Sveconorwegian orogen of SW Scandinavia: SIMS data on zircon in clastic metasediments, Precambrian Res., 2001, vol. 108, pp. 293–318.CrossRefGoogle Scholar
  10. Bingen, B., Belousova, E.A., and Griffin, W.L., Neoproterozoic recycling of the Sveconorwegian orogenic belt: detrital-zircon data from the Sparagmite basins in the Scandinavian Caledonides, Precambrian Res., 2011, vol. 189, pp. 347–367.CrossRefGoogle Scholar
  11. Bogdanova, S., Gorbatschev, R., Grad, M., et al., EUROBRIDGE: new insight into the geodynamic evolution of the East European Craton, in European Lithosphere Dynamics, Gee, D.G. and Stephenson, R.A., Eds., Geol. Soc. London, Mem., 2006, vol. 32, pp. 599–625.Google Scholar
  12. Bogdanova, S.V., Bibikova, E.V., De Waele, B., and Postnikov, A.V., Volgo–Uralia: a large piece of the global Archaean framework, EGU–2007. Geophys. Res. Abstr., 2007, vol. 9, A–05510.Google Scholar
  13. Bogdanova, S.V., Bingen, B., Gorbatschev, R., et al., The East European Craton (Baltica) before and during the assembly of Rodinia, Precambrian Res., 2008, vol. 160, pp. 23–45.CrossRefGoogle Scholar
  14. Bogdanova, S.V., De Waele, B., Bibikova, E.V., et al., Volgo–Uralia: the first U-Pb, Lu-Hf and Sm-Nd isotopic evidence of preserved Paleoarchean crust, Am. J. Sci., 2010, vol. 310, pp. 1345–1383.CrossRefGoogle Scholar
  15. Cavosie, A.J., Valley, J.W., and Wilde, S.A., Correlated microanalysis of zircon: trace element, δ18O, and U–Th–Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 5601–5616.CrossRefGoogle Scholar
  16. Cawood, P.A., Nemchin, A.A., Smith, M., and Loewy, S., Source of the Dalradian Supergroup constrained by U–Pb dating of detrital zircon and implications for the East Laurentian margin, J. Geol. Soc. London, 2003, vol. 160, pp. 231–246.CrossRefGoogle Scholar
  17. Cawood, P.A., Nemchin, A.A., Strachan, R., et al Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia, J. Geol. Soc. London, 2007, vol. 164, pp. 257–275.CrossRefGoogle Scholar
  18. Condie, K.C., Beyer, E., Belousova, E., et al., U–Pb isotopic ages and Hf isotopic composition of single zircons: the search for juvenile Precambrian continental crust, Precambrian Res., 2005, vol. 139, pp. 42–100.CrossRefGoogle Scholar
  19. Davis, D.W., U-Pb geochronology of Archaean metasedimentary rocks in the Pontiac and Abitibi subprovinces, Quebec, constraints on timing, provenance and regional tectonics, Precambrian Res., 2002, vol. 115, pp. 97–117.CrossRefGoogle Scholar
  20. DeCelles, P.G., Carrapa, B., and Gehrels, G.E., Detrital zircon U–Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina, Geology, 2007, vol. 35, pp. 323–326.CrossRefGoogle Scholar
  21. Dembovskii, B.Ya., Dembovskaya, Z.P., Klyuzhina, M.L., and Nasedkina, V.A., Ordovik Pripolyarnogo Urala. Geologiya, litologiya, stratigrafiya (Ordovician of the Sub-Polar Urals. Geology, Lithology, and Stratigraphy), Sverdlovsk: Ural. Otd. Akad. Nauk SSSR, 1990 [in Russian].Google Scholar
  22. Ershova V.B., Prokop’ev A.V., Khudoley, A.K., et al., Results of U–Pb (LA–ICPMS) dating of detrital zircons from metaterrigenous rocks of the basement of the North Kara basin, Dokl. Earth Sci., 2015, vol. 464, no. 2, pp. 997–1000.CrossRefGoogle Scholar
  23. Formirovanie zemnoi kory Urala (Formation of the Earth Crust of the Urals), Moscow: Nauka, 1986 [in Russian].Google Scholar
  24. Frei, D. and Gerdes, A., Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS, Chem. Geol., 2009, vol. 261, pp. 261–270.CrossRefGoogle Scholar
  25. Gaucher, C., Finney, S.C., Poire, D.G., et al., Detrital zircon ages of Neoproterozoic sedimentary successions in Uruguay and Argentina: insights into the geological evolution of the Rio de la Plata Craton, Precambrian Res., 2008, vol. 167, pp. 150–170.CrossRefGoogle Scholar
  26. Gehrels, G., Detrital zircon U-Pb geochronology: current methods and new opportunities, in Tectonics of Sedimentary Basins: Recent Advances, Busby, C. and Azor, A., Eds., Chichester: John Wiley, 2012, pp. 47–62.Google Scholar
  27. Geologicheskoe stroenie i neftegazonosnost' Orenburgskoi oblasti (Geological Structure and Oil and Gas Potential of the Orenburg Region), Panteleev, A.S., Kozlov, N.F., and Postoenko, P.I., Eds., Orenburg: Orenburg. Kn. Izd., 1997 [in Russian].Google Scholar
  28. Gerdes, A. and Zeh, A., Combined U–Pb and Hf isotope LA–(MC)–ICP–MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany, Earth Planet. Sci. Lett., 2006, vol. 249, pp. 47–61.CrossRefGoogle Scholar
  29. Glubinnoe stroenie, evolyutsiya i poleznye iskopaemye rannedokembriiskogo fundamenta Vostochno-Evropeiskoi platformy: interpretatsiya materialov po opornomu profilyu 1-EV, profilyam 4V i TATSEIS. T. 2 (Deep Crustal Structure, Evolution, and Mineral Deposits of the Early Precambrian Basement of the East European Craton: Interpretation of the Data from the 1-EU Geotraverse, the 4B and TATSEIS Profiles), Moscow: GEOKART, GEOS, 2010 [in Russian].Google Scholar
  30. Gorozhanina, E.N., Gorozhanin, V.M., Kuznetsov, N.B., Romanyuk, T.V., Osobennosti composition and structure of Ordovician terrigenous deposits in sections of the southeastern Russian Platform and Southern Urals, in Geol. sb. no. 11. Inform. mater. (Geol. Collection Sci. Works), Ufa: Inst. Geol. Ufim. Nauchn. Tsentr Ros. Akad. Nauk, 2014, vol. 11, pp. 97–117.Google Scholar
  31. Gosudarstvennaya geologicheskaya karta Rossiiskoi federatsii. Masshtab 1: 1000000 (tret’e pokolenie). Ural’skaya seriya. List R-40 (Severoural’sk). Ob"yasnitel’naya zapiska (The 1: 1000000 State Geological Map of the Russian Federation, 3rd ed.. Uralian Ser., Sheet R-40 (Severouralsk)), St. Petersburg: Kartfabrika Vseross. Nauchno-Issled. Geol. Inst., 2006 [in Russian].Google Scholar
  32. Grazhdankin, D.V. and Maslov, A.V. The room for the Vendian in the International Chronostratigraphic Chart, Russ. Geol. Geophys., 2015, vol. 56, no. 4, pp. 549–559.CrossRefGoogle Scholar
  33. Griffin, W.L., Belousova, E.A., Shee, S.R., et al., Archean crustal evolution in the northern Yilgarn craton: U–Pb and Hf-isotope evidence from detrital zircons, Precambrian Res., 2004, vol. 131, pp. 231–282.CrossRefGoogle Scholar
  34. Howard, K.E., Hand, M., Barovich, K.M., et al., Detrital zircon ages: improving interpretation via Nd and Hf isotopic data, Chem. Geol., 2009, vol. 262, pp. 293–308.CrossRefGoogle Scholar
  35. Ivleva, A.S., Podkovyrov, V.N., Ershova, V.B., et al., Results of U–Pb LA–ICP–MS dating of detrital zircons from Ediacaran–Early Cambrian deposits of the eastern part of the Baltic monoclise, Dokl. Earth Sci., 2016, vol. 468, no. 2, pp. 593–597.CrossRefGoogle Scholar
  36. Jiang, Y., Sun, M., Zhao, G., et al., Precambrian detrital zircons in the Early Paleozoic Chinese Altai: their provenance and implications for the crustal growth of central Asia, Precambrian Res., 2011, vol. 189, pp. 140–154.CrossRefGoogle Scholar
  37. Kheraskov, N.P., Principles of compilation of tectonic maps of folded areas on the example of the Southern Urals, Izv. Akad. Nauk SSSR. Ser. Geol., 1948, no. 5, pp. 121–134.Google Scholar
  38. Kirillova, G.L., Reconstruction of Late Mesozoic provenances for the East Asian continental margin based on U-Pb detrital zircon geochronology, Dokl. Earth Sci., 2014, vol. 456, no. 2, pp. 646–648.CrossRefGoogle Scholar
  39. Klyuzhina, M.L., Paleogeografiya Urala v ordovikskom periode (Paleogeography of the Urals in the Ordovician), Moscow: Nauka, 1985 [in Russian].Google Scholar
  40. Kosteva, N.N., Kuznetsov, N.B., Tebenkov, A.M., and Romanyuk, T.V., First results of the U–Pb isotopic (LA–ICP–MS) dating of detrital zircons from the Lower Paleozoic of Spitsbergen, Dokl. Earth Sci., 2014, vol. 455, no. 1, pp. 259–265.CrossRefGoogle Scholar
  41. Kovach, V.P., Ryazantsev, A.V., Tret’yakov, A.A., et al., U-Pb age of detrital zircons from neoproterozoic placers of the Erementau-Niyaz massif as a reflection of stages of Precambrian tectono-magmatic evolution of northern Kazakhstan, Dokl. Earth Sci., 2014, vol. 455, no. 1, pp. 254–258.CrossRefGoogle Scholar
  42. Krasnobaev, A.A., Kozlov, V.I., Puchkov, V.N., et al., The Akhmerovo granite massif: a proxy of Mesoproterozoic intrusive magmatism in the Southern Urals, Dokl. Earth Sci., 2008, vol. 418, no. 1, pp. 103–108.CrossRefGoogle Scholar
  43. Krasnobaev, A.A., Puchkov, V.N., Sergeeva, N.D., and Busharina, S.V., Uranium-lead age of zircons from granites and the substrate of the Mazara massif (Southern Urals), Dokl. Earth Sci., 2015, vol. 463, no. 1, pp. 719–725.CrossRefGoogle Scholar
  44. Krauze, S.N. and Maslov, V.A., Ordovik, silur i nizhnii devon zapadnogo sklona Bashkirskogo Urala (Ordovician, Silurian, and Devonian on the Western Slope of the Bashkir Urals), Ufa: Bashkir. Fil. Akad. Nauk SSSR, 1961 [in Russian].Google Scholar
  45. Kuznetsov, N.B., Natapov, L.M., Belousova, E.A., et al., First Results of Isotopic Dating of Detrital Zircons from the Clastic Rocks of the Pre-Uralides–Timanides Complexes: Contribution in the Late Precambrian Stratigraphy of the Enganepe Uplift, Western Polar Urals., Dokl. Earth Sci., 2009, vol. 424, no. 1, pp. 41–46.CrossRefGoogle Scholar
  46. Kuznetsov, N.B., Natapov, L.M., Belousova, E.A., et al., Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: implications for plate tectonic models, Gondwana Res., 2010, vol. 17, pp. 583–601.CrossRefGoogle Scholar
  47. Kuznetsov, N.B., Romanyuk, T.V., Shatsillo, A.V., et al., The first results of mass U-Pb isotope dating (LA–ICP–MS) for detrital zircons from the Asha Group, South Urals: Paleogeography and paleotectonics, Dokl. Earth Sci., 2012, vol. 447, no. 1, pp. 1240–1246.CrossRefGoogle Scholar
  48. Kuznetsov, N.B., Maslov, A.V., Belousova, E.A., et al., The First U–Pb (LA–ICP–MS) isotope data of detrital zircons from the basal levels of the Riphean Stratotype, Dokl. Earth Sci., 2013a, vol. 451, no. 1, pp. 724–728.CrossRefGoogle Scholar
  49. Kuznetsov, N.B., Soboleva, A.A., Miller, E.L., et al., First U–Pb datings of detrital zircons from Middle and Upper Paleozoic sandstones of the Polar Urals: testing the regional tectonic model, Dokl. Earth Sci., 2013b, vol. 451, no. 12, pp. 692–697.CrossRefGoogle Scholar
  50. Kuznetsov, N.B., Alekseev, A.S., Belousova, E.A., et al., Testing the models of Late Vendian evolution of the northeastern periphery of the East European Craton based on the first U/Pb dating of detrital zircons from Upper Vendian sandstones of southeastern White Sea Region, Dokl. Earth Sci., 2014, vol. 458, no. 1, pp. 1073–1076.CrossRefGoogle Scholar
  51. Kuznetsov, N.B., Meert, J.G., and Romanyuk, T.V., Ages of detrital zircons (U/Pb, LA-ICP-MS) from the Latest Neoproterozoic–Middle Cambrian (?) Asha Group and Early Devonian Takaty Formation, the Southwestern Urals: a test of an Australia–Baltica connection within Rodinia, Precambrian Res., 2014b, vol. 244, pp. 288–305.CrossRefGoogle Scholar
  52. Kuznetsov, N.B., Belousova, E.A., Degtyarev, K.E., et al., First results of U–Pb dating of detrital zircons from the Upper Ordovician sandstones of the Bashkir uplift (Southern Urals), Dokl. Earth Sci., 2016a, vol. 467, no. 2, pp. 325–330.CrossRefGoogle Scholar
  53. Kuznetsov, N.B., Gorozhanin, V.M., Belousova, E.A., et al., First results of U/Pb dating of detrital zircons from Ordovician of the Sol-Iletsk Dome (borehole 2-Ordovikskaya), Mater. 11-go Ural’skogo litol. soveshch. “Osadochnye kompleksy Urala i prilezhashchikh regionov i ikh minerageniya” (Proc. 11th Ural Lithol. Conf. “Sedimentary Complexes of the Urals and Adjacent Regions and their Minerageny”), Ekaterinburg: Inst. Geol. Geokim. Ural. Otd. Ross. Akad. Nauk, 2016b, pp. 135–138.Google Scholar
  54. Kuznetsov, N.B., Belousova, E.A., Romanyuk, T.V., et al., First results of U/Pb dating of detrital zircons from middle Riphean sandstones of the Zigalga Formation, South Urals, Dokl. Earth Sci., 2017a, vol. 475, no. 2, pp. 863–867.CrossRefGoogle Scholar
  55. Kuznetsov, N.B., Gorozhanin, V.M., Belousova, E.A., et al., First results of U–Pb dating of detrital zircons from the Ordovician clastic sequences of the Sol-Iletsk Block, East European Platform, Dokl. Earth Sci., 2017b, vol. 473, no. 2, pp. 381–385.CrossRefGoogle Scholar
  56. Lahtinen, R., Huhma, H., and Kousa, J., Contrasting source components of the Paleoproterozoic Svecofennian metasediments: detrital zircon U–Pb, Sm–Nd and geochemical data, Precambrian Res., 2002, vol. 116, pp. 81–109.CrossRefGoogle Scholar
  57. Larin, A.M., Rapakivi granites in the geological history of the earth. Part 1, magmatic associations with rapakivi granites: age, geochemistry, and tectonic setting, Stratigr. Geol. Correl., 2009, vol. 17, no. 3, pp. 3–28.CrossRefGoogle Scholar
  58. Larin, A.M., Granity rapakivi i assotsiiruyushchie porody (Rapakivi Granites and Related Rocks), St. Petersburg: Nauka, 2011 [in Russian].Google Scholar
  59. Maslov, A.V., Ivanov, K.S., Chumakov, N.M., et al., Razrezy verkhnego rifeya, venda i nizhnego paleozoya Srednego i Yuzhnogo Urala. Putevoditel’ geologicheskikh ekskursii (Upper Riphean, Vendian, and Lower Paleozoic Sections of theMiddle and South Urals: Guidebook of Geological Excursions), Ekaterinburg: Inst. Geol. Geokhim. Ural. Otd. Ross. Akad. Nauk, 1996 [in Russian].Google Scholar
  60. Maslov, A.V., Krupenin, M.T., Gareev, E.Z., Anfimov, L.V., Rifei zapadnogo sklona Yuzhnogo Urala (klassicheskie razrezy, sedimento- i litogenez, minerageniya, geologicheskie pamyatniki prirody) (The Riphean on the Western Slope of the Southern Urals: Classic Sections, Sedimentogenesis, Lithogenesis, Minerageny, and Geological Monuments of Nature), Ekaterinburg: Inst. Geol. Geokhim. Ural. Otd. Ross. Akad. Nauk, 2001. vol. IV.Google Scholar
  61. Maslov, A.V., First attempt of comparative analysis of the results of U–Pb isotope dating of clastic zircons from Precambrian rocks of the Urals and Southern Timan, Litosfera, 2012, no. 4, pp. 53–58.Google Scholar
  62. Maslov, A.V., Vovna, G.M., Kiselev, V.I., et al., U–Pb systematics of detrital zircons from the Serebryanka Group of the Central Urals, Lithol. Miner. Resour., 2012, vol. 47, no. 2, pp. 160–176.CrossRefGoogle Scholar
  63. Maslov, A.V., Meert, J., Levashova, N.M., et al., New data about the age of Vendian glacial deposits (Middle Urals), Dokl. Earth Sci., 2013, vol. 449, no.1, pp. 303–308.CrossRefGoogle Scholar
  64. Maslov, A.V., Mizens, G.A., Vovna, G.M., et al., Detrital zircons from the Lower Triassic sandstones of the Belskaya depression, Pre-Uralian foredeep: LA–ICP–MS U–Pb isotopic ages and distribution of rare and trace elements, Litosfera, 2016, no. 1, pp. 7–28.Google Scholar
  65. Maslov, V.A., Artyushkova, O.V., Mavrinskaya, T.M., Yakupov R.R., Ordovician deposits of the Southern Urals, in Paleogeografiya venda-rannego paleozoya Severnoi Evrazii (Vendian–Early Paleozoic Paleogeography of the Northern Eurasia), Ekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1998, pp. 67–73.Google Scholar
  66. Nikulova, N.Yu., Udoratina, O.V., Khubanov, V.B., Age of sandstones of basal section of Sablya Ridge Uralides (Subpolar Urals) according to U-Pb dating of detrital zircons, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2016, vol. 91, no. 1, pp. 15–23.Google Scholar
  67. Ogorodnikov, V.N., Polenov, Yu.A., Savichev, A.N., Pegmatites Slyudyanogorsk suture zone as polygenic and polychronous formations (Ufalei metamorphic complex, Southern Urals), in Ezhegodnik-2013 (Yearbook-2013), Ekaterinburg: Inst. Geol. Geokhim. Ural. Otd. Ross. Akad. Nauk, 2014, pp. 204–208.Google Scholar
  68. Orenburgskii tektonicheskii uzel: geologicheskoe stroenie i neftegazonosnost’ (The Orenburg Tectonic Node: Geology and Petroleum Potential), Volozh, Yu.A. and Parasyna, V.S., Eds., Moscow; Nauchn. Mir, 2013 [in Russian].Google Scholar
  69. Paleozoiskoe osadkonakoplenie na vneshnei zone shel’fa passivnoi okrainy severo-vostoka Evropeiskoi platformy (Paleozoic Sedimentation on the Outer Shelf Zone of the Passive Margin in the Northeast of the European Platform) Antoshkina, A.I. and Saldin, V.A., Eds., Syktyvkar: Geoprint, 2011 [in Russian].Google Scholar
  70. Petrov, G.A., Ronkin, Yu.L., Gerdes, A., Maslov, A.V., First results of U–Pb dating of detrital zircons from metasandstones of the Isherim anticlinorium (North Urals), Dokl. Earth Sci., 2015, vol. 464, no. 2, pp. 1010–1014.CrossRefGoogle Scholar
  71. Priyatkina, N., Khudoley, A.K., Collins, W.J., et al., Detrital zircon record of Meso- and Neoproterozoic sedimentary basins in northern part of the Siberian Craton: characterizing buried crust of the basement, Precambrian Res., 2016, vol. 285, pp. 21–38.CrossRefGoogle Scholar
  72. Puchkov, V.N., Paleogeodinamika Yuzhnogo i Srednego Urala (Paleogeodynamics of the Southern and Middle Urals), Ufa: GILEM, 2000.Google Scholar
  73. Puchkov, V.N., Geologiya Urala i Priural’ya (aktual’nye voprosy stratigrafii, tektoniki, geodinamiki i metallogenii) (Geology of the Urals and Cis-Urals (Actual Problems of Stratigraphy, Tectonics, Geodynamics, and Metallogeny)), Ufa: DizainPoligrafServis, 2010 [in Russian].Google Scholar
  74. Puchkov, V.N., Plumes in the Ural’s history, Byull. Mosk. O-va Ispyt. Prir. Otd Geol., 2013, no. 4, pp. 64–73.Google Scholar
  75. Pystin, A.M., Polimetamorficheskie kompleksy zapadnogo sklona Urala (Polymetamorphic Complexes of the Western Slope of the Urals), St. Petersburg: Nauka, 1994 [in Russian].Google Scholar
  76. Rainbird, R.H. and Davis, W.J., U-Pb detrital zircon geochronology and provenance of the late Paleoproterozoic Dubawnt Supergroup: linking sedimentation with tectonic reworking of the western Churchill Province, Canada, GSA Bull., 2007, vol. 119, pp. 314–328.CrossRefGoogle Scholar
  77. Reimann, C.R., Bahlburg, H., Kooijman, E., et al., Geodynamic evolution of the early Paleozoic Western Gondwana margin 14°–17° S reflected by the detritus of the Devonian and Ordovician basins of southern Peru and northern Bolivia, Gondwana Res., 2010, vol. 18, pp. 370–384.CrossRefGoogle Scholar
  78. Romanyuk, T.V., Kuznetsov, N.B., Maslov, A.V., et al., Geochemical and Lu–Hf (LA–ICP-MS) systematic of detrital zircons from Lower Neoproterozoic Lemeza sandstones, Southern Urals, Dokl. Earth Sci., 2013a, vol. 453, no. 2, pp. 1200–1204.CrossRefGoogle Scholar
  79. Romanyuk, T.V., Maslov, A.V., Kuznetsov, N.B., et al., First data on LA–ICP-MS U/Pb zircon geochronology of Upper Riphean sandstones of the Bashkir Anticlinorium (South Urals), Dokl. Earth Sci., 2013b, vol. 452, no. 2, pp. 997–1000.CrossRefGoogle Scholar
  80. Romanyuk, T.V., Kuznetsov, N.B., Maslov, A.V., et al., Geochemical and Lu/Hf isotopic (LA–ICP–MS) signature of detrital zircons from sandstones of the basal levels of the Riphean stratotype, Dokl. Earth Sci., 2014, vol. 459, no. 3, pp. 340–344.Google Scholar
  81. Romanyuk, T.V., Kuznetsov, N.B., Belousova, E.A., et al., Geochemical and Lu/Hf isotopic (LA–ICP–MS) systematics of detrital zircons from the Upper Ordovician sandstones of the Bashkir Uplift (Southern Urals), Dokl. Earth Sci., 2017, vol. 472, no. 1, pp. 1356–1360.Google Scholar
  82. Safonova, I., Maruyama, S., Hirata, T., et al., LA–ICP–MS U–Pb ages of detrital zircons from Russia largest rivers: implications for major granitoid events in Eurasia and global episodes of supercontinent formation, J. Geodynamics, 2010, vol. 50, pp. 134–153.CrossRefGoogle Scholar
  83. Semikhatov, M.A., Kuznetsov, A.B., Chumakov, N.M., Isotope age of boundaries between the general stratigraphic subdivisions of the Upper Proterozoic (Riphean and Vendian) in Russia: the evolution of opinions and the current estimate, Stratigr. Geol. Correl., 2015, vol. 23, no. 6, pp. 568–579.CrossRefGoogle Scholar
  84. Shardakova, G.Yu., New data on the Rb-Sr age of granites of the Nikolsky Massif (Ufaley block), Litosfera, 2015, no. 4, pp. 93–98.Google Scholar
  85. Shishkin, M.A., Astapov, A.P., Kabatov, N.V., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi federatsii. Masshtab 1: 1000000 (tret’e pokolenie). Ural’skaya seriya - List Q-41 (Vorkuta). Ob"yasnitel’naya zapiska (The 1: 1000000 State Geological Map of the Russian Federation, 3rd ed.). Uralian Ser., Sheet Q-41 (Vorkuta). Explanatory Note), St. Petersburg: Kartfabr. Vseross. Nauchno-Issled. Geol. Inst, 2005 [in Russian].Google Scholar
  86. Shkol’nik, S.I., Letnikova, E.F., Belichenko, V.G., et al., LA–ICP–MS U–Pb dating of detrital zircons from metaterrigenous deposits of the Vendian-Cambrian cover of the Tuva-Mongolian microcontinent (Tunka Bald Mountains, East Sayan), Dokl. Earth Sci., 2014, vol. 454, no. 2, pp. 154–157.CrossRefGoogle Scholar
  87. Sircombe, K.N., Quantitative comparison of geochronological data using multivariate analysis: a provenance study example from Australia, Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 1593–1619.CrossRefGoogle Scholar
  88. Soboleva, A.A., Kuznetsov, N.B., Miller E.L., et al., First results of U–Pb dating of detrital zircons from basal horizons of Uralides (Polar Urals), Dokl. Earth Sci., 2012, vol. 445, no. 2, pp. 962–968.CrossRefGoogle Scholar
  89. Soboleva, A.A., Saldin, V.A., Yukhtanov, P.P., Hourigan, J.K., Age of Lower Paleozoic rocks composing erosional outliers on Manpupuner Ridge (Northern Urals), Byull. Moscow Soc. Nat., 2017, vol. 92, no. 2, pp. 3–20.Google Scholar
  90. Stratigrafiya i fauna ordovika Srednego Urala (Ordovician Stratigraphy and Fauna of the Middle Urals), Moscow: Nedra, 1973 [in Russian].Google Scholar
  91. Tektonicheskaya istoriya Polyarnogo Urala (Tectonic History of the Polar Urals), Moscow: Nauka, 2001 [in Russian].Google Scholar
  92. Tektonicheskaya karta Urala (dopaleozoiskii skladchatyi fundament) masshtaba 1: 1000000 (The 1: 1000000 Tectonic map of Ural (Pre-Paleozoic Fold Basement)), Sverdlovsk: PGO Uralgeologiya, 1983 [in Russian].Google Scholar
  93. Tektonika Urala (Tectonics of the Urals), Moscow: Nauka, 1977 [in Russian].Google Scholar
  94. Vermeesch, P., How many grains are needed for a provenance study? Earth Planet. Sci. Lett., 2004, vol. 224, pp. 351–441.CrossRefGoogle Scholar
  95. Vodolazskaya, V.P., Oparenkova, L.I., Zarkhidze, D.V., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1: 1000000 (tret’e pokolenie). Seriya Ural’skaya. List Q-40-Pechora. Ob"yasnitel’naya zapiska (The 1: 1000000 State Geological Map of the Russian Federation: Scale, 3rd ed.: Uralian Ser., Sheet Q-40 (Pechora). Explanatory Note), St. Petersburg: Kartfabr. Vseross. Nauchno-Issled. Geol.Inst, 2013 [in Russian].Google Scholar
  96. Williams, I.S., Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia, Aust. J. Earth Sci., 2001, vol. 48, pp. 557–580.CrossRefGoogle Scholar
  97. Zhdanov, A.V., Legenda Ural’skoi serii listov Gosgeolkarty- 1000/3 (aktualizirovannaya versiya) (Legend of Ural series of Sheets of Gosgeolmap-1000/3 (Revised Edition)), St. Petersburg: Vseross. Nauchno-Issled. Geol.Inst., 2009 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Geology and Geochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations