Skip to main content
Log in

Unique Clinkers and Paralavas from a New Nyalga Combustion Metamorphic Complex in Central Mongolia: Mineralogy, Geochemistry, and Genesis

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents mineralogical and geochemical data on clinkers and paralavas and on conditions under which they were formed at the Nyalga combustion metamorphic complex, which was recently discovered in Central Mongolia. Mineral and phase assemblages of the CM rocks do not have analogues in the world. The clinkers contain pyrogenically modified mudstone relics, acid silicate glass, partly molten quartz and feldspar grains, and newly formed indialite microlites (phenocrysts) with a ferroindialite marginal zone. In the paralava melts, spinel microlites with broadly varying Fe concentrations and anorthite–bytownite were the first to crystallize, and were followed by phenocrysts of Al-clinopyroxene ± melilite and Mg–Fe olivine. The next minerals to crystallize were Ca-fayalite, kirschsteinite, pyrrhotite, minerals of the rhönite–kuratite series, K–Ba feldspars (celsian, hyalophane, and Ba-orthoclase, Fe3+-hercynite ± (native iron, wüstite, Al-magnetite, and fresnoite), nepheline ± (kalsilite), and later calcite, siderite, barite, celestine, and gypsum. The paralavas contain rare minerals of the rhönite–kuratite series, a new end-member of the rhönite subgroup Ca4Fe 2+8 Fe 3+4 O4 [Si8Al4O36], a tobermorite-like mineral Ca5Si5(Al,Fe)(OH)O16 · 5H2O, and high- Ba F-rich mica (K,Ba)(Mg,Fe)3(Al,Si)4O10F2. The paralavas host quenched relics of microemulsions of immiscible residual silicate melts with broadly varying Si, Al, Fe, Ca, K, Ba, and Sr concentrations, sulfide and calcitic melts, and water-rich silicate–iron ± (Mn) fluid media. The clinkers were formed less than 2 Ma ago in various parts of the Choir–Nyalga basin by melting Early Cretaceous mudstones with bulk composition varies from dacitic to andesitic. The pyrogenic transformations of the mudstones were nearly isochemical, except only for volatile components. The CM melt rocks of basaltic andesitic composition were formed via melting carbonate–silicate sediments at temperatures above 1450°C. The Ca- and Fe-enriched and silicaundersaturated paralavas crystallized near the surface at temperatures higher than 900–1100°C and oxygen fugacity \(f_{O_2 }\) between the IW and QFM buffers. In local melting domains of the carbonate–silicate sedimentary rocks and in isolations of the residual melts among the paralava matrix the fluid pressure was higher than the atmospheric one. The bulk composition, mineral and phase assemblages of CM rocks of the Nyalga complex are very diverse (dacitic, andesitic, basaltic andesitic, basaltic, and silica-undersaturated mafic) because the melts crystallized under unequilibrated conditions and were derived by the complete or partial melting of clayey and carbonate–silicate sediments during natural coal fires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balassone, G., Franco, E., Mattia, C.F., and Pulity, R., Indialite in xenolitic rocks from Somma–Vesuvius volcano (southern Italy): crystal chemistry and petrogenetic features, Am. Mineral., 2004, vol. 89, pp. 1–6.

    Article  Google Scholar 

  • Bentor, Y.K., Gross, S., and Heller, L., High-temperature minerals in non-metamorphosed sediments in Israel, Nature, 1963, vol. 199, pp. 478–479.

    Article  Google Scholar 

  • Bentor, Y.K., Kastner, M., Perlman, I., and Yellin, L., Combustion metamorphism of bituminous sediments and the formation of melts of granitic and sedimentary composition, Geochim. Cosmochim. Acta, 1981, vol. 45, pp. 2229–2255.

    Article  Google Scholar 

  • Bentor, Y.K., Combustion metamorphic glasses, J. Non-Cryst. Solids, 1984, vol. 67, pp. 433–448.

    Article  Google Scholar 

  • Boivin, P., Données expérimentales préliminaires sur la stabilité de la rhönite à 1 atmosphère. Application aux gisements naturels, Bull. Mineral., 1980, vol. 103, pp. 491–502.

    Google Scholar 

  • Bratash, V.I., Report of party No. 26 on Prospecting Works in 1951 on a Scale 1: 200000 in the Eastern Part of the Nyalga Basin of the Central Aimak of Mongolia, Ulan-Bator, 1952, Ulan-Bator: Geological Fund,, Cadastre no. 1842.

  • Bratash, V.I. and Novikova, L.A., Report on 1: 200000 geological survey in the Nyalga Basin, Ulan-Bator, 1952–1953, Ulan-Bator: Geological Fund, Cadastre No. 1309.

  • Burg, A., Kolodny, Ye., and Lyakhovsky, V., Hatrurim- 2000: the “mottled” “zone” revisited, forty years later, Isr. J. Earth Sci., 1999, vol. 48, pp. 209–223.

    Google Scholar 

  • Chukanov, N.V., Aksenov, S.M., Pekov, I.V., et al., Ferroindialite (Fe2+,Mg)2Al4Si5O18—a new beryl group mineral from the Eifel volcanic area, Germany, Zap. Ross. Mineral. O-va, 2014, vol. 143, no. 1, pp. 46–56.

    Google Scholar 

  • Coal and Peat Fires: a Global Perspective. Volume 3. Case Studies and Coal Fires, Stracher, G.B., Prakash, A., and Sokol, E.V., Eds., Amsterdam: Elsevier, 2015.

  • Cosca, M. and Peacor, D., Chemistry and structure of esseneite, (CaFe3+AlSiO6), a new pyroxene produced by pyrometamorphism, Am. Mineral., 1987, vol. 72, pp. 148–156.

    Google Scholar 

  • Cosca, M.A., Essene, E.J., Geissman, J.G., et al., Pyrometamorphic rocks associated with naturally burned coal beds, Powder River basin, Wyoming, Am. Mineral., 1989, vol. 74, pp. 85–100.

    Google Scholar 

  • Davidson, P.M. and Mukhopadhyay, D.K., Ca–Fe–Mg olivines: phase relations and a solution model, Contrib. Mineral. Petrol., 1984, vol. 86, pp. 256–263.

    Article  Google Scholar 

  • Deer, W.A., Howie, R.A., and Zussman, J., An Introduction to the Rock-Forming Minerals, Essex–New York: Longman Scientific and Technical–Wiley, 1992.

    Google Scholar 

  • Durand, C., Baumgartner, L.P., and Marquer, D., Low melting temperature for calcite at 1000 bars on the join CaCO3-H2O—some geological implications, Terra Nova, 2015, vol. 27, pp. 364–369.

    Article  Google Scholar 

  • Erdenetsogt, B., Lee, I., Bat-Erdene, D., and Jargal, L., Mongolian coal-bearing basins: geological settings, coal characteristics, distribution, and resources, Int. J. Coal Geol., 2009, vol. 80, pp. 87–104.

    Article  Google Scholar 

  • Foit, F.F., Hooper, R.L., and Rosenberg, P.E., An unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal-fire buchite from Buffalo, Wyoming, Am. Mineral., 1987, vol. 72, pp. 137–147.

    Google Scholar 

  • Genshaft, Yu.S. and Saltykovskii, A.Ya. Cenozoic volcanism of Mongolia, Ross. Zh. Nauk Zemle, 2000, vol. 2, no. 2, pp. 153–183.

    Google Scholar 

  • Genshaft, Yu.S., Klimenko, G.V., Saltykovskii, A.Ya., Ageeva, L.I., New data on composition and age of Cenozoic volcanic rocks of Mongolia, Dokl. Akad. Nauk SSSR, 1990, vol. 311, no. 2, pp. 420–424.

    Google Scholar 

  • Gittins, J. and Tuttle, O.F., The system CaF2-Ca(OH)2- CaCO3, Am. J. Sci., 1964, vol. 262, pp. 66–75.

    Article  Google Scholar 

  • Grapes, R., Pyrometamorphism, Berlin: Springer, 2011.

    Google Scholar 

  • Grapes, R. and Keller, J., Fe2+-dominant rhönite in undersaturated alkaline basaltic rocks, Kaiserstuhl volcanic complex, Upper Rhine graben, SWGermany, Eur. J. Mineral, 2010, vol. 22, pp. 285–292.

    Article  Google Scholar 

  • Grapes, R., Zhang, K., and Peng, Z., Paralava and clinker products of coal combustion, Yellow River, Shanxi Province, China, Lithos, 2009, vol. 113, pp. 831–843.

    Article  Google Scholar 

  • Grapes, R., Korzhova, S., Sokol, E., and Seryotkin, Y., Paragenesis of unusual Fe-cordierite (sekaninaite)-bearing paralava and clinker from the Kuznetsk coal basin, Siberia, Russia, Contrib. Mineral. Petrol., 2011, vol. 162, pp. 253–273.

    Article  Google Scholar 

  • Grapes, R., Sokol, E., Kokh, S., et al., Petrogenesis of Narich paralava formed by methane flares associated with mud volcanism, Altyn-Emel national park, kazakhstan, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 781–803.

    Article  Google Scholar 

  • Grew, E.S., Hålenius, U., Pasero, M., and Barbier, J., Recommended nomenclature for the sapphirine and surinamite groups (sapphirine supergroup), Mineral. Mag., 2008, vol. 72, pp. 39–876.

    Article  Google Scholar 

  • Haefeker, U., Kaindl, R., and Tropper, P., Semi-quantitative determination of the Fe/Mg ratio in synthetic cordierite using Raman spectroscopy, Am. Mineral., 2012, vol. 97, pp. 1662–1669.

    Article  Google Scholar 

  • Haggerty, S.E., Oxide mineralogy of the upper mantle, in Oxide Minerals: Petrologic and Magnetic Significance, Lindsley, D.H., Eds., Mineral. Soc. Amer. Rev. Mineral., 1991, vol. 25, pp. 355–416.

    Google Scholar 

  • He, Y.T. and Traina, S.J., Transformation of magnetite to goethite under alkaline Ph conditions, Clay Mineral., 2007, vol. 42, pp. 13–19.

    Article  Google Scholar 

  • Heffern, E.L., Reiners, P.W., Naeser, C.W., and Coates, D.A., Geochronology of clinker and implications for evolution of the Powder River basin landscape, Wyoming and Montana, Geol. Soc. Amer. Rev. Eng. Geol., 2007, pp. 155–175.

    Google Scholar 

  • Hess, J.C. and Lippolt, H.J., Compilation of K-Ar measurements on HD-B1 standard biotite–1994 status report, in Phanerozoic Time Scalel, Odin, G.S., Eds., Bul. Liasis. Inform. IUGS Subcom. Geochronol., 1994, vol. 12, pp. 19–23.

    Google Scholar 

  • Hwang, S-L., Shen, P., Chu, H-T., et al., Kuratite Ca4(Fe2+ 10Ti2)O4[Si8Al4O36], the Fe2+-analogue of rhönite, a new mineral from D’Orbigny angrite meteorite, Mineral. Mag., 2016, vol. 80, pp. 1067–1076.

    Article  Google Scholar 

  • Kalugin, I.A., Tret’yakov, G.A., and Bobrov, V.A., Iron ore basalts in the burnt rocks of East Kazakhstan, Tr. Inst. Geol. Geofiz. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1991.

    Google Scholar 

  • Keller, J., Zaitsev, A.N., and Wiedenmann, D., Primary magmas at Oldoinyo Lengai: the role of olivine melilitites, Lithos, 2006, vol. 91, pp. 150–172.

    Article  Google Scholar 

  • Kunzmann, T., The aenigmatite–rhönite mineral group, Eur. J. Mineral., 1999, vol. 11, pp. 743–756.

    Article  Google Scholar 

  • Lavrent’ev, Yu.G., Karmanov, N.S., and Usova, L.V. Electron probe microanalysis of minerals: microprobe or scanning electron microscope? Russ. Geol. Geophys., 2015, vol. 56, no. 8, pp. 1154–1161.

    Article  Google Scholar 

  • Lee, J.-Y., Marti, K., Severinghaus, J.P., et al., A redetermination of the isotopic abundances of atmospheric Ar, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 4507–4512.

    Article  Google Scholar 

  • McDonough, W.E. and Sun, S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  • Melluso, L., Conticelli, S., and Gennaro, R., Kirschsteinite in the Capo di Bove melilite leucitite lava (cecilite), Alban Hills, Italy, Mineral. Mag., 2010, vol. 74, pp. 887–902.

    Article  Google Scholar 

  • Mukhopadhyay, D.K. and Lindsley, D.H., Phase relations in the join kirschsteinite (CaFeSiO4)–fayalite (Fe2SiO4), Am. Mineral., 1983, vol. 68, pp. 1089–1094.

    Google Scholar 

  • Nigmatulina, E.N. and Nigmatulina, E.A., Pyrogenic iron ores of ancient coal fires of the Kuznetsk Basin, Zap. Ross. Mineral. O-va, 2009, no. 1, pp. 52–68.

    Google Scholar 

  • Novikov, I.S., Sokol, E.V., Travin, A.V., and Novikova, S.A., Signature of Cenozoic orogenic movements in combustion metamorphic rocks: mineralogy and geochronology (example of the Salair–Kuznetsk Basin transition), Russ. Geol. Geophys., 2008, vol. 49, no. 6, pp. 378–396.

    Article  Google Scholar 

  • Novikova, S., Sokol, E., and Khvorov, P., Multiple combustion metamorphic events in the Goose Lake coal basin, Transbaikalia, Russia: first dating results, Quat. Geochronol., 2016, vol. 36, pp. 38–54.

    Article  Google Scholar 

  • Peretyazhko, I.S., CRYSTAL–Applied software for mineralogists, petrologists, and geochemists, Zap. Ross. Mineral. O-va, 1996, no. 3, pp. 141–148.

    Google Scholar 

  • Peretyazhko, I.S. and Savina, E.A., Silicate–iron liquid immiscibility in rhyolitic magma, Dokl. Earth Sci., 2014, vol. 457, pp. 1028–1033.

    Article  Google Scholar 

  • Peretyazhko I.S., Savina E.A., Karmanov N.S., and Pavlova, L.A., Silicate–iron fluid media in rhyolitic magma: data on rhyolites from the Nilginskaya Depression, Central Mongolia, Petrology, 2014, vol. 22, no. 3, pp. 255–292.

    Article  Google Scholar 

  • Peretyazhko, I.S., Savina, E.A., and Khromova, E.A., Minerals of the rhönite–kuratite series in paralavas from a new combustion metamorphic complex of Choir–Nyalga basin (Central Mongolia): chemistry, mineral assemblages, and formation conditions, Mineral. Mag., 2017, vol. 81, pp. 949–974.

    Article  Google Scholar 

  • Platz, T., Foley, S.F., and André, L., Low-pressure fractionation of the Nyiragongo volcanic rocks, Virunga Province, D.R. Congo, J. Volcanol. Geotherm. Res., 2004, vol. 136, pp. 269–295.

    Article  Google Scholar 

  • Pokrovskii, P.V., Ammonium chloride from the Khamarin–Khural–Khid brown coal field in Mongolia, Zap. Ross. Mineral. O-va, 1949, no. 3, pp. 38–45.

    Google Scholar 

  • Richardson, I.G., Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: applicability to hardened pastes of tricalcium silicate, ß-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume, Cement Concrete Res., 2004, vol. 34, pp. 1733–1777.

    Article  Google Scholar 

  • Schreyer, W., Maresch, W.V., Daniels, P., and Wolfsdorff, P., Potassic cordierite: characteristic minerals for high-temperature, very low-pressure environments, Contrib. Mineral. Petrol., 1990, vol. 105, pp. 162–172.

    Article  Google Scholar 

  • Sharpenok, L.N., Kukharenko, E.A., and Kostin, A.E., New provisions for volcanogenic rocks in the petrographic code, J. Volcanol. Seismol., 2009, vol. 3, no. 4, pp. 279–293.

    Article  Google Scholar 

  • Sharygin, V.V., Sokol E.V., and Belakovskii, D.I., Fayalite–sekaninaite paralava from the Ravat coal fire (Central Tajikistan), Russ. Geol. Geophys., 2009, no. 8, pp. 695–713.

    Google Scholar 

  • Sokol, E.B., Maksimova, N.V., Nigmatulina, E.N., et al., Pirometamorfizm (Pyrometamorphism), Novosibirsk: SO RAN, 2005.

    Google Scholar 

  • Sokol, E.V., Novikova, S.A., Alekseev, D.V., and Travin, A.V., Natural coal fires in the Kuznetsk coal basin: geologic causes, climate, and age, Russ. Geol. Geophys., 2014, vol. 55, no. 9, pp. 1043–1064.

    Article  Google Scholar 

  • Sokol, E., Sharygin, V., Kalugin, V., et al., Fayalite and kirschsteinite solid solutions in melts from burned spoilheaps, South Urals, Russia, Eur. J. Mineral., 2002, vol. 14, pp. 795–807.

    Google Scholar 

  • Steiger, R.H. and Jäger, E., Subcommission on geochronology: convention on the use of decay constants in geoand cosmochronology, Earth Planet. Sci. Lett., 1977, vol. 36, pp. 359–362.

    Article  Google Scholar 

  • Wyllie, P.J. and Tuttle, O.F., The system CaO–CO2-H2O and the origin of carbonatites, J. Petrol., 1960, vol. 1, pp. 1–46.

    Article  Google Scholar 

  • Žacek, V., Skála, R., Chlupácová, M., and Dvorak, Z., Ca- Fe3+-rich, Si-undersaturated buchite from Želénky, North- Bohemian brown coal basin, Czech Republic, Eur. J. Mineral., 2005, vol. 17, pp. 623–633.

    Google Scholar 

  • Žaček, V., Skála, R., and Zdeněk, D., Combustion metamorphism in the Most Basin, Coal and Peat Fires: A Global Perspective, Glenn, B., Prakash, A., and Sokol, E.V., Eds., New York: Elsevier, 2015, pp. 162–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Peretyazhko.

Additional information

Original Russian Text © I.S. Peretyazhko, E.A. Savina, E.A. Khromova, N.S. Karmanov, A.V. Ivanov, 2018, published in Petrologiya, 2018, Vol. 26, No. 2, pp. 178–210.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peretyazhko, I.S., Savina, E.A., Khromova, E.A. et al. Unique Clinkers and Paralavas from a New Nyalga Combustion Metamorphic Complex in Central Mongolia: Mineralogy, Geochemistry, and Genesis. Petrology 26, 181–211 (2018). https://doi.org/10.1134/S0869591118020054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591118020054

Navigation