Petrology

, Volume 26, Issue 2, pp 167–180 | Cite as

The Olivinite of the Krestovskaya Intrusion—the Product of Larnite-Normative Alkali Ultramafic Magma: Melt Inclusion Data

Article
  • 11 Downloads

Abstract

Olivinites of the Krestovskaya Intrusion consist of predominant amount of olivine, and minor Ti-magnetite, perovskite, and clinopyroxene (from single grain to a few vol %). Primary crystallized melt inclusions were found and studied in olivine, perovskite, and diopside of the olivinites. Daughter phases in olivine-hosted melt inclusions are monticellite, perovskite, kalsilite, phlogopite, magnetite, apatite, and garnet andradite. Perovskite-hosted melt inclusions contain such daughter phases as kalsilite, pectolite, clinopyroxene, biotite, magnetite, and apatite, while daughter phases in clinopyroxene-hosted melt inclusions are represented by kalsilite, phlogopite, magnetite, and apatite. According to melt inclusion heating experiments, olivine crystallized from above 1230°C to 1180°C. It was followed by perovskite crystallizing at ≥1200°C and clinopyroxene, at 1170°C. According to analysis of quenched glass of the melt inclusions, the chemical composition of melts hosted in the minerals corresponds to the larnite-normative alkali ultramafic (kamafugite) magma significantly enriched in incompatible elements. The high incompatible element concentrations, its distribution, and geochemical indicator ratios evidenced that the magma was derived by the partial melting of garnet-bearing undepleted mantle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, E. and Gresseve, N., Abundance of the elements: meteoritic and solar, Geochim. Cosmochim. Acta, 1989, vol. 53, pp. 197–214.CrossRefGoogle Scholar
  2. Belousov, V.V., Gerasimovskii, V.I., Goryachev, A.V., et al., Vostochno-Afrikanskaya Riftovaya sistema. T. 3. Geokhimiya. Seismologiya. Osnovnye rezul’taty (East African Rift System. Volume 3. Geochemistry, Seismology, and Main Results), Moscow: Nauka, 1974.Google Scholar
  3. Brey, G.P. and Green, D.H., Solubility of CO2 in olivine melilitite at high pressure and the role of CO2 in the Earth’s upper mantle, Contrib. Mineral. Petrol., 1976, vol. 55, pp. 217–230.CrossRefGoogle Scholar
  4. Cullers, R.L. and Craft, J.L., Rare earth elements in igneous rocks of the continental crust: predominantly basic and ultrabasic rocks and kimberlites, part 7.2, in Rare Earth Element Geochemistry, Henderson P., Ed., Elsevier, 1984, pp. 239–243.Google Scholar
  5. Danyushevsky, L.V. and Plechov, P., Petrolog3: integrated software for modeling crystallization processes, Geochem. Geophys. Geosyst., 2011, vol. 12, no. 7, p. Q07021. doi 10.1029/2011GC003516CrossRefGoogle Scholar
  6. David, K., Schiano, P., and Allegre, C.J., Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes, Earth Planet. Sci. Lett., 2000, vol. 178, nos. 3–4, pp. 285–301.CrossRefGoogle Scholar
  7. Eggler, D.H., Effect of CO2 on the melting of peridotite, Carnegie Inst. Washington Yearbook, 1974, vol. 73, pp. 215–224.Google Scholar
  8. Egorov L.S. Iiolit-karbonatitovyi magmatizm (na primere Maimecha-Kotuiskogo kompleksa Polyarnoi Sibiri) (Ijolite–Carbonatite Magmatism by the Example of the Maimecha–Kotui Complex of the Polar Siberia), Leningrad: Nedra, 1991.Google Scholar
  9. Foley, S., Venturelli, G., Green, D.H., and Toscani, L., The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models, Earth Sci. Rev., 1987, vol. 24, pp. 81–134.Google Scholar
  10. Gudfinnsson, G.H. and Presnall, D.C., Continuous gradations among primary carbonatitic, kimberlitic, melilitic, basaltic, picritic, and comatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa, J. Petrol., 2005, vol. 46, pp. 1645–1659.CrossRefGoogle Scholar
  11. Kogarko L.N. and Green, D., Phase equilibria during the melting of melilite nephelinite under pressures of up to 60 kbar, Dokl. Earth Sci., 1998, vol. 359, pp. 404–405.Google Scholar
  12. Kravchenko, S.M. and Rass, I.T., Alkaline-ultrabasic formation as a paragenesis of two comagmatic series, Dokl. Akad. Nauk SSSR, 1985, vol. 283, pp. 111–116.Google Scholar
  13. Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., et al., Kaledonskii kompleks ul’traosnovnykh, shchelochnykh porod i karbonatitov Kol’skogo poluostrova i Severnoi Karelii (Caledonian Complex of Ultrabasic, Alkaline, rocks and Carbonatites of the Kola Peninsula and North Karelia), Moscow: Nedra, 1965.Google Scholar
  14. Landa, E.A. and Lyapunov, S.M., Content of rare-earth elements in the dunites of the Guli massif and genesis of these rocks, Dokl. Akad. Nauk SSSR, 1984, vol. 276, pp. 243–245.Google Scholar
  15. Lesnov, F.P., Redkozemel’nye elementy v ul’tramafitovykh i mafitovykh porodakh i ikh mineralakh (Rare-Earth Elements in the Ultramafic and Mafic Rocks and Their Minerals), Novosibirsk: Geo, 2007.Google Scholar
  16. McDonough, W.F. and Sun, S.S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.CrossRefGoogle Scholar
  17. McKey, G.A., Partitioning of rare elements between major silicate minerals and basaltic melts, in Geochemistry and Mineralogy of Rare Earth Elements, Lipin, B.R. and McKey, G.A., Mineral. Soc. Amer. Rev. Mineral., 1989, vol. 21, pp. 45–78.Google Scholar
  18. Nash, W.P. and Crecraft, H.R., Partition coefficients for trace elements in silicic magmas, Geochim. Cosmochim. Acta, 1985, vol. 49, no. 11, pp. 2309–2322. doi 10.1016/0016–7037(85)90231–5CrossRefGoogle Scholar
  19. Nielsen, T.F.D., Solovova, I.P., and Veksler, I.V., Parental melts of melilitolite and origin of alkaline carbonatite: evidence from crystallized melt inclusions, Gardiner Complex, Contrib. Mineral. Petrol., 1997, vol. 126, pp. 331–344.CrossRefGoogle Scholar
  20. Osorgin, N.Yu. and Tomilenko, A.A., Micro heating stage, Avt. Sv-vo. No. 1562816 SSSR, 7.05. 1990.Google Scholar
  21. Panina, L.I. and Motorina, I.V. Meimechites, porphyritic alkaline picrites, and melanephelinites of Siberia: conditions of crystallization, parental magmas, and sources, Geochem. Int., 2013, vol. 51, no. 2, pp. 109–128.CrossRefGoogle Scholar
  22. Panina L.I., Rokosova E.Yu., Isakova A.T., and Tolstov A.V., Lamprophyres of the Tomtor Massif: a result of mixing between potassic and sodic alkaline mafic magmas, Petrology, 2016, vol. 24, no. 6, pp. 608–625.CrossRefGoogle Scholar
  23. Panina, L.I. and Usol’tseva, L.M., Pyroxenites of the Krestovskaya alkaline–ultramafic intrusion: composition of parental magmas and their sources, Geochem. Int., 2009, no. 4, pp. 358–371.CrossRefGoogle Scholar
  24. Panina, L.I. and Vasil’ev, Yu.R., Genesis of ultrabasic and alkaline rocks of the Odikhincha intrudion, in Mineralogiya endogennykh obrazovanii (po vklyucheniyam v mineralakh) (Mineralogy of Endogenous Complexes: Inclusions in Minerals), Tr. Zap.-Sib. Otd. VMO, 1975, vol. 2, pp. 145–150.Google Scholar
  25. Panina, L.I., Multiphase carbonate–salt immiscibility in carbonatite melts: data on melt inclusion from the Krestovskiy massif minerals (Polar Siberia), Contrib. Mineral. Petrol., 2005, vol. 150, pp. 19–36.CrossRefGoogle Scholar
  26. Panina, L.I. and Usoltseva, L.M., Alkaline–ultrabasic mantle-derived magmas, their sources, and crystallization feature: data from melt inclusion studies, Lithos, 2008, vol. 103, pp. 431–444.CrossRefGoogle Scholar
  27. Rass, I.T., Melilite rocks in the alkaline-ultrabasic complexes of the northwestern Siberia: petrochemistry, geochemistry, and origin, Geochem. Int., 2000, vol. 38, no. 10. pp. 1003–1013.Google Scholar
  28. Rass I.T. and Plechov P.Yu., Melt inclusions in olivines from the olivine–melilitite rock of the Guli Massif, northwestern Siberian Platform, Dokl. Earth Sci., 2000, vol. 375, pp. 1399–1402.Google Scholar
  29. Rivalenti, G., Vannucci, R., Rampone, E., et al., Peridotite clinopyroxene chemistry reflects mantle processes rather than continental versus oceanic settings, Earth Planet. Sci. Lett., 1996, vol. 139, no. 3, pp. 423–437.CrossRefGoogle Scholar
  30. Ryabchikov, I.D., Fluid mass transfer and mantle magma formation, Vulkanol. Seismol., 1982, no. 5, pp. 3–9.Google Scholar
  31. Ryabchikov, I.D., Processes of mantle magma formation, Evolyutsiya magmatizma v istorii Zemli (Evolution of Magmatism in the Earth’s History), Moscow: Nauka, 1987, pp. 349–371.Google Scholar
  32. Ryabchikov, I.D., Kogarko, L.N., and Solovova, I.P., Physicochemical conditions of magma formation at the base of the Siberian Plume: insight from the investigation of melt inclusions in the meymechites and alkali picrites of the Maimecha–Kotui Province, Petrology, 2009, vol. 17, no. 3, pp. 287–299.CrossRefGoogle Scholar
  33. Salters, V.J.M. and Longhi, J., Trace element partitioning during the initial stages of melting beneath mid-ocean ridges, Earth Planet. Sci. Lett., 1999, vol. 166, pp. 15–30.CrossRefGoogle Scholar
  34. Sazonov, A.M., Zvyagina, E.A., Leont’ev, S.I., et al., Platinonosnye shchelochno-ul’traosnovnye intruzii Polyarnoi Sibiri (PGE-bearing alkaline–ultrabasic intrusions of the Polar Siberia), Tomsk: TsNTI, 2001.Google Scholar
  35. Sobolev, A.V., Melt inclusions in minerals as a source of principle petrological information, Petrology, 1996, vol. 4, no. 3, pp. 209–220.Google Scholar
  36. Sobolev, A.V. and Slutskii, A.B., Composition and crystallization conditions of a parental melt of Siberian meimechites and relation with general problem of ultrabasic magmas, Geol. Geofiz., 1984, vol. 25, no. 12, pp. 97–110.Google Scholar
  37. Sobolev, A.V., Sobolev, S.V., Kuz’min, D.V., et al., Siberian meimechites: origin and relation to flood basalts and kimberlites, Russ. Geol. Geophys., 2009, vol. 50, no. 12, pp. 999–1033.CrossRefGoogle Scholar
  38. Vasiliev, Yu.R. and Gora, M.P., The origin of dunites and olivinites in the alkali-ultrabasic intrusive complexes of the Siberian Craton, Dokl. Earth Sci., 2012, vol. 442, pp. 36–39.Google Scholar
  39. Vasiliev, Yu.R. and Zolotukhin, V.V., Petrologiya ul’trabazitov cevera Sibirskoi platformy i nekotorye problemy ikh genezisa (Petrology of Ultrabasites of the Siberian Platform and Some Problems of their Genesis) Novosibirsk: Nauka, 1975.Google Scholar
  40. Veksler, I.V., Nielsen, T.F., and Sokolov, S.V., Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis, J. Petrol., 1998, vol. 39, nos. 11–12, pp. 2015–2031.CrossRefGoogle Scholar
  41. Zaitsev, A.I., Entin, A.R., Nenashev, N.I., et al., Geokhronologiya i izotopnaya geokhimiya karbonatitov Yakutii (Geokhoronology and Isotope Geochemistry of Yakutian Kimberlites) Yakutsk: YaNTs SORAN, 1992.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.aSobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Mining, Geology, and Geotechnology of the Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations