Petrology

, Volume 26, Issue 1, pp 29–46 | Cite as

The Composition and Age of the Mesoarchean Gabbro in the South Vygozersky and Kamennoozersky Greenstone Structures, Karelia

Article
  • 1 Downloads

Abstract

The geochemical and zircon geochronological (U-Pb, SHRIMP-II) study of Mesoarchean gabbros of the South Vygozersky and Kamennoozersky greenstone structures of Central Karelia made it possible to distinguish four gabbro types: (1) Fe–Ti gabbro, 2869 ± 12 Ma, (2) gabbro compositionally close to tholeiitic basalts, 2857 ± 7 Ma, (3) leucogbabbro, 2840 ± 5 Ma; and (4) melanogabbro, 2818 ± 14 Ma. From the early to late gabbros, the rocks are depleted in Ti, Fe, V, Y, Zr, Nb, Hf, REE and enriched in Mg, Ca, Cr, Ni. According to the systematics (Condie, 2005), the Nb/Y, Zr/Y, Zr/Nb ratios in the studied Late Archean gabbros are close to those of primitive mantle, while the gabbros in composition are similar to those of plumederived ocean-plateau basalts. Their magma sources were derived from different mantle reservoirs. The leucogabbro and melanogabbro with similar εNd = +4 were derived from a depleted mantle source (DM). The gabbro close in composition to tholeiitic basalts and having the elevated positive εNd (+4.9) was derived from a strongly depleted mantle source. Insignificant admixture of crustal material or lithospheric mantle is inferred in a source of the Fe–Ti gabbro (with lowest εNd = +2.1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Condie, K.C., High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?, Lithos, 2005, vol. 79, pp. 491–504.CrossRefGoogle Scholar
  2. Fitton, J.G., Saunders, A.D., Norry, M.J., et al., Thermal and chemical structure of the Iceland plume, Earth Planet. Sci. Lett., 1997, vol. 153, pp. 197–208.CrossRefGoogle Scholar
  3. Frolova, T.I. and Burikova, I.A., Magmaticheskie formatsii sovremennykh geotektonicheskikh obstanovok (Magmatic Formations of the Modern Geotectonic Settings), Moscow: MGU, 1997.Google Scholar
  4. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.CrossRefGoogle Scholar
  5. Gosudarstvennaya geologicheskaya karta RF masshtaba 1: 200000. Izdanie vtoroe. Seriya Karel’skaya. List R-36-XII (Medvezh’egorsk). Ob"yasnitel’naya zapiska (State Geological Map of the RF on a Scale 1: 200000. 2nd Edition. Karel’skaya Series. Sheet R-36-XII (Medvezh’egorsk). Explanatory Notes), St. Petersburg: VSEGEI, 2013.Google Scholar
  6. Hoskin, P.W.O., Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS: a consideration and comparison of two broadly competitive techniques, J. Trace Microprobe Technol., 1998, vol. 16, pp. 301–326.Google Scholar
  7. Irvine, T.N. and Baragar, W.R.A., A guide to the chemical classification of the common volcanic rocks, Can. J. Earth Sci., 1971, vol. 8, pp. 523–548.CrossRefGoogle Scholar
  8. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.CrossRefGoogle Scholar
  9. Kamo, S.L., Alen, C.M., et al., Temora 1: a new zircon standard for U–Pb geochronology, Chem. Geol., 2003, vol. 200, pp. 155–170.CrossRefGoogle Scholar
  10. Kerr, A.C., White, R.V., and Saunders, A.D., LIP reading: recognizing oceanic plateaux in the geological record, J. Petrol., 2000, vol. 41, no. 7, pp. 1041–1055.CrossRefGoogle Scholar
  11. Lobach-Zhuchenko, S.B., Arestova, N.A., Chekulaev, V.P., et al., Evolution of the Yuzhno-Vygozero greenstone belt, Karelia, Petrology, 1999, vol. 7, no. 2, pp. 160–176.Google Scholar
  12. Lobach-Zhuchenko, S.B., Chekulaev, V.P., Sergeev, S.A., et al., Archaean rocks from southeastern Karelia (Karelian granite greenstone terrain), Precambrian Res., 1993, vol. 62, no. 4, pp. 375–397.CrossRefGoogle Scholar
  13. Ludwig, K.P., SQUID1.00. A User’s manual, Berkley Geochronol. Center, Sp. Publ., 2000, no. 2.Google Scholar
  14. Ludwig, K.P., Isoplot/Ex. A User’s Manual Berkley Geochronol. Center, Sp. Publ., 2001, no. 1a.Google Scholar
  15. Myskova, T.A., Zhitnikova, I.A., and L’vov, P.A., Late Archean intermediate-felsic magmatism of the South Vygozersky and Kamennoozersky greenstone structures of Central Karelia, Stratigraphy. Geol. Correlation, 2015, vol. 23, no. 4, pp. 351–374.CrossRefGoogle Scholar
  16. Puchtel, I.S., Hofmann, A.W., Amelin, Yu.V., et al., Combined mantle plume-island arc model for the formation of the 2.9 Ga Sumozero–Kenozero greenstone belt, SE Baltic Shield: isotope and trace element constraints, Geochim. Cosmochim. Acta, 1999, vol. 63, no. 21, pp. 3579–3595.CrossRefGoogle Scholar
  17. Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield), SPb.: Nauka, 2005.Google Scholar
  18. Richard, P., Shimizu, N., and Allegre, C.J., 143Nd/144Nd a natural tracer: an application to oceanic basalts, Earth Planet. Sci. Lett., 1976, vol. 31, pp. 269–278.CrossRefGoogle Scholar
  19. Samsonov, A.V., Bogina, M.M., Bibikova, E.V., et al., The relationship between adakitic, calc-alkaline volcanic rocks and TTGs: implications for the tectonic setting of the Karelian greenstone belts, Baltic Shield, Lithos, 2005, vol. 79, pp. 83–106.Google Scholar
  20. Smirnov, V.K., Sobolev, A.V., Batanova, V.G., et al., Quantitative SIMS analysis of melt inclusions and host minerals for trace elements and H2O, EOS Transl. AGU, Spring Meet. Suppl., 1995, vol. 76, no. 17.Google Scholar
  21. Sochevanov, N.N., Arestova, N.A., Matrenichev, V.A., et al., First data on Sm-Nd age of the Archean basalts in the Karelian granite–greenstone terrane, Dokl. Akad. Nauk SSSR, 1991, vol. 318, no. 1, pp. 175–180.Google Scholar
  22. Sun, S.S. and McDonough, W.F., Magmatism in the ocean basins, Geol. Soc. London. Spec. Publ., 1989, vol. 2, pp. 313–345.CrossRefGoogle Scholar
  23. Williams, I.S., U-Th-Pb geochronology by ion microprobe, Applications of Microanalytical Techniques to Understanding Mineralizing Processes, McKibben, M.A., Shanks, III W.S., and Ridley, W.I., Eds., Rev. Econ. Geol., 1998, vol. 7, pp. 1–35.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. A. Myskova
    • 1
  • I. A. Zhitnikova
    • 2
  • P. A. Lvov
    • 2
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.All-Russian Research Geological Institute (VSEGEI)St. PetersburgRussia

Personalised recommendations