Advertisement

Petrology

, Volume 26, Issue 1, pp 96–113 | Cite as

Island-arc and Active Continental Margin Adakites from the Sabzevar Zone, Iran

Article

Abstract

Cretaceous to Eocene plutonic and volcanic rocks of the Sabzevar zone have an adakite characteristic with high Sr/Y ratio, depleted HFSE and enriched LILE features. Most of the Sabzevar adakites are high silica adakites with low Ni, Cr and Co contents. LREE/HREE ratio is high, while K2O content is low to intermediate. Adakites in the Sabzevar zone are exposed in two areas, which are named southern and northern adakites here. The combination of Sr, Nd and Pb isotopic data with major and trace elements indicates that the adakitic rocks are formed by partial melting of the Sabzevar oceanic slab. Nb/Ta content of the samples indicates that the adakitic magmas were generated at different depth in the subduction system. Dy/Yb ratios of adakitic samples indicate positive, negative and roughly flat patterns for different samples, suggesting garnet and amphibole as residual phases during slab-derived adakitic magma formation. Sabzevar adakites emplaced during late to post-kinematic events. Sabzevar oceanic basin demised during a northward subduction by central Iranian micro-continents (CIM) and Eurasia plate convergence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alavi, M., Tectonics of the Zagros orogenic belt of Iran: new data and interpretations, Tectonophysics, 1994, vol. 229, pp. 211–238.CrossRefGoogle Scholar
  2. Arjmandzadeh, R. and Santos, J.F., Sr-Nd isotope geochemistry and tectonomagmatic setting of the Dehsalm Cu–Mo porphyry mineralizing intrusives from Lut Block, eastern Iran, Int. J. Earth Sci., 2014, vol. 103, pp. 123–140.CrossRefGoogle Scholar
  3. Baroz, R., Macaudiere, J., Montigny, R., Noghreyan, H., Ohnenstetter, M., and Rocci, G., Ophiolites and related formations in the central part of the Sabzevar range (Iran) and possible geotectonic reconstructions, Geodynamic Project (Geotraverse) in Iran, 1983, rept. no. 51, pp. 519.Google Scholar
  4. Baumann, A., Spices, O., and Lensch, G., Strontium isotopic composition of postophiolitic Tertiary volcanics between Kashmar, Sabzevar and Quchan (NE-Iran), Geodynamic Project (Geotraverse) in Iran, Geol. Surv. Iran, 1983, rept. no. 51, pp. 267–275.Google Scholar
  5. Breeding, C.M., Ague, J.J., and Bröcker, M., Fluidmetasedimentary rock interactions in subduction-zone melange: implications for the chemical composition of arc magmas, Geology, 2004, vol. 32, pp. 1041–1044.CrossRefGoogle Scholar
  6. Brown, G.C., Thorpe, R.S., and Webb, P.C., The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources, J. Geol. Soc. London, 1984, vol. 141, pp. 413–426.CrossRefGoogle Scholar
  7. Castillo, P.R., Janney, P.E., and Solidum, R., Petrology and geochemistry of Camiguin Island, southern Philippines: insights into the source of adakite and other lavas in a complex arc tectonic setting, Contrib. Mineral. Petrol., 1999, vol. 134, pp. 33–51.CrossRefGoogle Scholar
  8. Castillo, P.R., An overview of adakite petrogenesis, Chine Sci. Bull., 2006, vol. 51, pp. 257–268.CrossRefGoogle Scholar
  9. Cox, K.G., Bell, J.D., and Pankhurst, R.J., The Interpretation of Igneous Rocks, George Allen & Unwin, 1979.CrossRefGoogle Scholar
  10. Davidson, J., Turner, S., and Plank, T., Dy/Dy*: variations arising from mantle sources and petrogenetic processes, J. Petrol., 2013, vol. 54, pp. 525–537.CrossRefGoogle Scholar
  11. Defant, M.J. and Drummond, M.S., Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 1990, vol. 347, pp. 662–665.CrossRefGoogle Scholar
  12. Delavari, M., Amini, S., Schmitt, A.K., McKeegan, K.D., and Harrison, T.M., U-Pb geochronology and geochemistry of Bibi-Maryam pluton, eastern Iran: Implication for the late stage of the tectonic evolution of the Sistan Ocean, Lithos, 2014, vol. 200–201, pp. 197–211.Google Scholar
  13. Ding, X., Lundstrom, C., Huang, F., Li, J., Zhang, Z., Sun, X., Liang, J., and Sun, W., Natural and experimental constraints on formation of the continental crust based on niobium–tantalum fractionation, Int. Geol. Rev., 2009, vol. 51, pp. 473–501.CrossRefGoogle Scholar
  14. Drummond, M.S., Defant, M.J., and Kepezhinskas, P.K., Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas, T. Roy Soc. Edinb. Earth, 1996, vol. 87, pp. 205–215.CrossRefGoogle Scholar
  15. Falloon, T.J., Danyushevsky, L.V., Crawford, A.J., Meffre, S., Woodhead, J.D., and Bloomer, S.H., Boninites and adakites from the northern termination of the Tonga Trench: implications for adakite petrogenesis, J. Petrol., 2008, vol. 49, pp. 697–715.CrossRefGoogle Scholar
  16. Foley, S.F., Tiepolo, M., and Vannucci, R., Growth of early continental crust controlled by melting of amphibolite in subduction zones, Nature, 2002, vol. 417, pp. 637–640.CrossRefGoogle Scholar
  17. Ghasemi, H. and Sadeghian, M., Khan Alizadeh, A.R., Tanha, A., Petrology, geochemistry and radiometric ages of high silica adakitic domes of Neogene continental arc, south of Quchan, Quar. Iran. J. Crystal Mineral., 2010, vol. 18, pp. 347–370.Google Scholar
  18. Gill, R., Igneous Rocks and Processes: a Practical Guide, Wiley-Blackwell, 2010.Google Scholar
  19. Goss, A.R., Kay, S.M., and Mpodozis, C., Andean adakite-like high-Mg andesites on the northern margin of the Chilean–Pampean flat-slab (27–28.5° S) associated with frontal arc migration and fore-arc subduction erosion, J. Petrol., 2013, vol. 54, pp. 2193–2234.CrossRefGoogle Scholar
  20. Hoffmann, J.E. Münker, C., Næraa, T., Minik, T.R., Herwartz, D., Garbe-Schönberg, D., and Svahnberg, H., Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 4157–4178.CrossRefGoogle Scholar
  21. Jamshidi, K., Ghasemi, H., Troll, V.R., Sadeghian, M., and Dahren, B., Magma storage and plumbing of adakitetype post-ophiolite intrusions in the Sabzevar ophiolitic zone, northeast Iran, Solid Earth, 2015a, vol. 6, pp. 49–72.CrossRefGoogle Scholar
  22. Jamshidi, K., Ghasemi, H., and Miao, L., U-Pb age dating and determination of source region composition of postophiolite adakitic domes of Sabzevar, Iran. J. Petrol., 2015b, vol. 6, pp. 121–138.Google Scholar
  23. Khalatbari-Jafari, M., Babaie, H.A., and Mirzaie, M., Geology, petrology and tectonomagmatic evolution of the plutonic crustal rocks of the Sabzevar ophiolite, NE Iran, Geol. Mag., 2013a, vol. 150, pp. 862–884.CrossRefGoogle Scholar
  24. Khalatbari-Jafari, M., Babaie, H.A., and Gani, M., Geochemical evidence for Late Cretaceous marginal arc-to-backarc transition in the Sabzevar ophiolitic extrusive sequence, northeast Iran, J. Asian Earth Sci., 2013b, vol. 70-71, pp. 209–230.CrossRefGoogle Scholar
  25. Kheirkhah, M., Neill, I., and Allen, M.B., Petrogenesis of OIB-like basaltic volcanic rocks in a continental collision zone: Late Cenozoic magmatism of Eastern Iran, J. Asian Earth Sci., 2015, vol. 106, pp. 19–33.CrossRefGoogle Scholar
  26. Kolb, M., Von Quadt, A., Peytcheva, I., Heirich, C.A., Fowler, S.J., and Cvetkovic, V., Adakite-like and normal arc magmas: distinct fractionation paths in the East Serbian segment of the Balkan–Carpathian Arc, J. Petrol., 2013, vol. 54, pp. 421–451.CrossRefGoogle Scholar
  27. Li, X.H., Li, Z.H., Li, W.X., Wang, X.C., and Gao, Y., Revisiting the “C-type adakites” of the Lower Yangtze River Belt, central eastern China: In-situ zircon Hf-O isotope and geochemical constraints, Chem. Geol., 2013, vol. 345, pp. 1–15.CrossRefGoogle Scholar
  28. Lindenberg, H.G., Gorler, K., Jacobshagen, V., and Ibbeken, H., Post-Paleozoic stratigraphy, structure and orogenic evolution of the southern Sabzevar Zone and the Taknar Block (Khorassan, NE Iran), Neues Jahrb. Geol. PA, 1984, vol. 168, pp. 287–326.Google Scholar
  29. Martin, H., Smithies, R.H., Rapp, R.P., Moyen, J.F., and Champion, D.C., An overview of adakite, tonalite-trondhjemite-granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution, Lithos, 2005, vol. 79, pp. 1–24.CrossRefGoogle Scholar
  30. Maruyama, S. and Okamoto, K., Water transportation from the subducting slab into the mantle transition zone, Gondwana Res., 2007, vol. 11, pp. 148–165.CrossRefGoogle Scholar
  31. Moyen, J.F., High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”, Lithos, 2009, vol. 112, pp. 556–574.CrossRefGoogle Scholar
  32. Münker, C., Wörner, G., Yogodzinski, G., and Churikova, T., Behaviour of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas, Earth Planet. Sci. Lett., 2004, vol. 224, pp. 275–293.CrossRefGoogle Scholar
  33. Nagel, T.J., Hoffmann, J.E., and Munker, C., Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust, Geology, 2012, vol. 40, pp. 375–378.CrossRefGoogle Scholar
  34. Omrani, H., Moazzen, M., Oberhansli, R., Tsujimori, T., Bousquet, R., and Moayyed, M., Metamorphic history of glaucophane-paragonite-zoisite eclogites from the Shanderman area, northern Iran, J. Metamorph. Geol., 2013a, vol. 31, pp. 791–812.CrossRefGoogle Scholar
  35. Omrani, H., Moazzen, M., Oberhansli, R., Altenberger, U., and Lange, M., The Sabzevar blueschists of the North-Central Iranian micro-continent as remnants of the Neotethys-related oceanic crust subduction, Int. J. Earth Sci., 2013b, vol. 102, pp. 1491–1512.CrossRefGoogle Scholar
  36. Omrani, H., Moazzen, M., and Oberhansli, R., Geochemistry of Sabzevar regional metamorphic rocks, northern Central Iranian Microcontinent Blocks (CIM), Iran. J. Crystal. Mineral., 2014, vol. 22, pp. 49–56.Google Scholar
  37. Omrani, H., Moazzen, M., and Oberhansli, R., Geodynamic evolution of the Sabzevar Zone, north of the Central Iranian Microcontinent, Mineral. Petrol., 2017a, doi 10.1007/s00710-017-0505-3Google Scholar
  38. Omrani, H., Moazzen, M., Oberhansli, R., and Moslempour, M.E., Iranshahr blueschist: subduction of the inner Makran oceanic crust, J. Metamorph. Geol., 2017b, doi 10.1111/jmg.12236Google Scholar
  39. Qian, Q. and Hermann, J., Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 1195–1224.CrossRefGoogle Scholar
  40. Ramezani, J. and Tucker, R., The Saghand Region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics, Amer. J. Sci., 2003, vol. 303, pp. 622–655.Google Scholar
  41. Rapp, R.P., Shimizu, N., and Norman, M.D., Applegate GS, reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8GPa, Chem. Geol., 1999, vol. 160, pp. 335–356.CrossRefGoogle Scholar
  42. Rapp, R., Xiao, L., and Shimizu, N., Experimental constraints on the origin of potassium-rich adakites in eastern China, Acta Petrol. Sinica, 2002, vol. 18, pp. 293–302.Google Scholar
  43. Rossetti, F., Nasrabady, M., Vignaroli, G., Theye, T., Gerdes, A., Razavi, M.H., and Moinvaziri, H., Early Cretaceous migmatitic mafic granulites from the Sabzevar range (NE Iran): implications for the closure of the Mesozoic peri-Tethyan oceans in central Iran, Terra Nova, 2010, vol. 22, pp. 26–34.CrossRefGoogle Scholar
  44. Rossetti, R., Nasrabady, M., Theye, T., Gerdes, A., Monie, P., Lucci, F., and Vignaroli, G., Adakite differentiation and emplacement in a subduction channel: The late Paleocene Sabzevar magmatism (NE Iran), Geol. Soc. Am. Bull., 2014, vol. 126, pp. 317–343.CrossRefGoogle Scholar
  45. Shafaii Moghad, H., Corfu, F., Chiaradia, M., Stern, R.J., Ghorbani, G., and Rossetti, F., Sabzevar Ophiolite, NE Iran: progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data, Lithos, 2014, vol. 210–211, pp. 224–241.Google Scholar
  46. Shervais, J.W., Birth, death, and resurrection: The life cycle of supra-subduction zone ophiolites, Geochem. Geophys., 2001, vol. 2. doi 10.1029/2000G000080Google Scholar
  47. Spies, O., Lensch, G., and Mihem, A., Geochemistry of the postophiolitic Tertiary volcanics between Sabzevar and Quchan (NE Iran), GSI, 1983, rept. no. 51, pp. 247–266.Google Scholar
  48. Stern, C.R. and Kilian, R., Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral Volcanic Zone, Contrib. Mineral. Petrol., 1996, vol. 123, pp. 263–281.CrossRefGoogle Scholar
  49. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in the Ocean Basins, Saunders, A.D. and Norry, M.J., Eds., Geol. Soc. Spec. Publ., 1989, vol. 42, pp. 313–345.CrossRefGoogle Scholar
  50. Wang, Q., McDermott, F., Xu, J.F., Bellon, H., and Zhu, Y.T., Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Low crustal melting in an intracontinental setting, Geology, 2005, vol. 33 pp. 465–468.Google Scholar
  51. Whalen, J.B., Percival, J.A., McNicoll, V.J., and Longstaffe, F.J., A mainly crustal origin for tonalitic granitoid rocks, superior province, Canada: implications for late Archean tectonomagmatic processes, J. Petrol., 2005, vol. 43, pp. 1551–1570.Google Scholar
  52. Wilson, M., Igneous Petrogenesis: Global Tectonic Approach, London: Unwin Hyman, 1989, http://dx.doi.org/doi 10.1007/978-1-4020-6788-410.1007/978-1-4020-6788-4CrossRefGoogle Scholar
  53. Xiao, L. and Clemens, J.D., Origin of potassic (C-type) adakite magmas: experimental and field constraints, Lithos, 2007, vol. 95, pp. 399–414.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of GeologyGolestan UniversityGorganIran

Personalised recommendations