, Volume 26, Issue 1, pp 82–95 | Cite as

Impactor Type and Model of the Origin of the Zhamanshin Astrobleme, Kazakhstan

  • T. A. Gornostaeva
  • A. V. Mokhov
  • P. M. Kartashov
  • O. A. Bogatikov


Fragments of heterogeneous cosmonegic substance (nickelphosphide Ni3P and ZnAl2) were found using high resolution analytical electron microscopic techniques, for the first time in samples from a large meteorite crater: the Zhamanshin astrobleme in Kazakstan. Inasmuch as such fragments cannot simultaneously occur in meteorite of any one type, we suggest that the impactor of the Zhamanshin crater was of comet nature.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anders, E. and Grevesse, N., Abundances of the elements: meteoritic and solar, Geochim. Cosmochim. Acta, 1989, vol. 53, no. 1, pp. 197–214.CrossRefGoogle Scholar
  2. Arakelyants, M.M., Shukolyukov, Yu.A., Dang, Vu Min’, and Izokh, E.P., K–Ar age of tektites of Vietnam and Zha manshin astrobleme, Aktual’nye Voprosy Meteoritiki v Sibiri (Current Problems of Meteoritics in Siberia), Novosibirsk, 1988, pp. 239–244.Google Scholar
  3. Bagdassarov, N., Neuville, D., Linard, Y., et al., DSC and Raman spectroscopy study of glass transition in tektites, Abstracts of EGS-AGU-EUG Joint Assembly, Nice 2003, abstract # 8631.Google Scholar
  4. Bindi, L., Eiler, J.M., Guan, Y.N., et al., Evidence for the extraterrestrial origin of a natural quasicrystal, Proc. National Acad. Sci., 2012, vol. 109, no. 5, pp. 1396–1401.CrossRefGoogle Scholar
  5. Blinov, I.M., Mechanism and conditions of the origin of hills on the floors of explosion craters during cratering explosions, Fiz. Goreniya Vzryva, 2004, vol. 40, no. 6, pp. 76–83.Google Scholar
  6. Boiko, Ya.I., Tektites–irghizites (bedding, compositional specifics and relation with impactites–zhamanshinites), Izv. Aakad. Nauk Kaz. SSR, Ser. Geol., 1989, no. 3, pp. 49–54.Google Scholar
  7. Bouŝka, V.V., Povondra, P.V., Florensky, P.V., and Randa, Z., Irghizites and zhamanshinites: Zhamanshin Crater, USSR, Meteoritics, 1981, vol. 16, no. 2, pp. 171–184.CrossRefGoogle Scholar
  8. Britvin, S.N., Kolomenskii, V.D., Boldyreva, M.M., et al., Nickelf phosphide (Ni,Fe)3P: a Ni-bearing analogue of schreibersite, Zap. Vseross. Mineral. O-va, 1999, vol. 128, no. 3, pp. 64–72.Google Scholar
  9. Chao, E.C.T., Dwornik, E.J., and Littler, J., New data on the nickel–iron spherules from southeast Asian tektites and their implications, Geochim. Cosmochim. Acta, 1964, vol. 28, no. 6, pp. 971–974.CrossRefGoogle Scholar
  10. Cliff, G. and Lorimer, G.W., Quantitative analysis of thin metal foils using EMMA-4, the ratio technique, Proceedings of the 5th European Congress on Electron Microscopy, London: The institute of Physics, 1972, pp. 140–141.Google Scholar
  11. Ehmann, W.D., Stroube, Jr.W.B., Ali, M.Z., and Hossain, T.I.M., Zhamanshin crater glasses: chemical composition and comparison with tektites, Meteoritics, 1977, vol. 12, pp. 212–215.Google Scholar
  12. Feldman, V.I., Kapustkina, I.G., Granovskii, L.B., and Sazonova, L.V., Meteoritic materials in impactites, Kosmokhimiya i meteoritika (Cosmochemistry and Meteoritics), Kiev: Nauk. Dumka, 1984, pp. 147–151.Google Scholar
  13. Florenskii, P.V. and Dabizha, A.I., Meteoritnyi krater Zhamanshin (Zhamanshin Meteorite Crater), Moscow: Nauka, 1980.Google Scholar
  14. Gladkikh, N.T., Dukarov, S.V., Krishtal’, A.P., et al., Poverkhnostnye yavleniya i fazovye prevrashcheniya v kondensirovannykh plenkakh (Surface Phenomena and Phase Transformations in Condensed Films), Khar’kov: KhNU im. V.N. Karazina, 2004.Google Scholar
  15. Gladkikh, N.T. and Kryshtal’, A.P., Change of unit cell parameters in island vacuum condensates of Cu, Ag, and Au, VANT. Ser. Vakuum, Chistye Materialy, Sverkhprovodniki, 1998, no. 2, p. 3.Google Scholar
  16. Glass, B.P., Fredriksson, K., and Florensky, P.V., Microirghizites recovered from a sediment sample from the Zhamanchin impact structure, J. Geophys. Res., 1983, vol. 388.Google Scholar
  17. Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., and Bogatikov, O.A., Condensate glasses from the Zhamanshin Crater. I. Irghizites, Petrology, 2016, vol. 24, no. 1, pp. 1–20.CrossRefGoogle Scholar
  18. Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., and Bogatikov, O.A. Condensate glasses from the Zhamanshin crater. II. Zhamanshinites, Petrology, 2017, vol. 1, no. 1, pp. 1–22.CrossRefGoogle Scholar
  19. Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., and Bogatikov, O.A., Condensate constituent in impact glasses of the Zhamanshin Crater, Dokl. Earth Sci., 2015, vol. 464, pp. 924–927.CrossRefGoogle Scholar
  20. Gornostaeva T.A., Mokhov A.V., Kartashov P.M., and Bogatikov, O.A., The protective role of glass film over the surface of metallic particles of the lunar regolith, Dokl. Earth Sci., 2014, vol. 459, pp. 1457–1459.CrossRefGoogle Scholar
  21. Grieve, R.A.F., Terrestrial impact: the record in the rocks, Meteoritics, 1991, vol. 26, no. 3, pp. 175–194.CrossRefGoogle Scholar
  22. Izokh, E.P. and Le Dyk An, Tektites of Vietnam. Hypothesis of comet transportation, Meteoritika, 1983, vol. 42, pp. 158–169.Google Scholar
  23. Izokh, E.P., Petrochemistry of target rocks, impactites, and tektites of the Zhamanshin astrobleme, Kosmicheskoe veshchestvo i Zemlya (Cosmic Matter and the Earth), Novosibirsk: Nauka, 1986, pp. 159–203.Google Scholar
  24. Jonasova, S., Ackerman, L., Zak, K., et al., Geochemistry of impact glasses and target rocks from the Zhamanshin impact structure, Geochim. Cosmochim. Acta, 2016, vol. 190, pp. 239–264.CrossRefGoogle Scholar
  25. Kapustkina, I.G. and Feldman, V.I., Fractionation of meteoritic substance in the impact process, Geokhimiya, 1988, no. 11, pp. 1547–1557.Google Scholar
  26. Kartashov, P.M., Gornostaeva, T.A., Mokhov A.V., and Bogatikov, O.A., The natural high-pressure phase of cubic CdSe in impact glass from Zhamanshin Crater, Dokl. Earth Sci. 2016, vol. 467, pp. 412–414.CrossRefGoogle Scholar
  27. Kiryukhin, L.G., Florenskii, P.V., and Sobolev, Yu.S., A mystery of Zhamanshin, Priroda, 1969, no. 3, p. 70.Google Scholar
  28. Kleinmann, B., Magnetite bearing spherules in tektites, Geochim. Cosmochim. Acta, 1969, vol. 33, no. 9, pp. 1113–1120.CrossRefGoogle Scholar
  29. Koeberl, C. and Shirey, S.B., Detection of a meteoritic component in ivory coast tektites with rhenium-osmium isotopes, Science, 1993, vol. 261, no. 5121, pp. 595–598.CrossRefGoogle Scholar
  30. Kolesov, G.M., Identification of cosmic (meteoritic) substance from the trace element abundance, Kosmicheskoe veshchestvo na Zemle (Cosmic Substance on the Earth), Kiev: Nauk. Dumka, 1982, pp. 38–46.Google Scholar
  31. Larionov, M.Yu., Comparative study of phosphides (Fe,Ni)3P of diverse morphology extracted from the Sikhote Alin iron meteorite, in XI Mezhdunarodnaya nauchnotekhnicheskaya Ural’skaya shkola-seminar molodykh uchenykh-metallovedov (XI International Scientific–Technical Uralian School–Seminar of Young Metal Physicist), Yekaterinburg, 2010, pp. 218–220.Google Scholar
  32. Lushnipov, A.A., Negin, A.E., Pakhomov, A.V., and Smirnov, B.M., Aerogel structures in gas, Usp. Fiz. Nauk, 1991, vol. 161, pp. 113–123.CrossRefGoogle Scholar
  33. Maier, W.D., Andreoli, M.A.G., McDonald, I., et al., Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa, Nature, 2006, vol. 441, no. 7090, pp. 203–206.Google Scholar
  34. Margolis, S.V., Claeys, P., and Kyte, F.T., Microtektites, microcrystites, and spinels from a Late Pliocene asteroid impact in the southern ocean, Science, 1991, vol. 251, no. 5001, pp. 1594–1597.CrossRefGoogle Scholar
  35. Markova O.M., Yakovlev O.I., Semenov G.A., and Belov A.N., Some general results of experiments on evaporation of natural melts in a Knudsen cell, Geokhimiya, 1986, no. 11, pp. 1559–1569.Google Scholar
  36. Masaitis, V.L., Danilin, A.N., Mashchak, M.S., et al., Geologiya astroblem (Geology of Astroblemes), Leningrad: Nedra, 1980.Google Scholar
  37. Mason, B., Handbook of Elemental Abundances in Meteorites, New York: Gorgon Breach, 1971.Google Scholar
  38. Mizera, J., Randa, Z., and Tomandl, I., Geochemical characterization of impact glasses from the Zhamanshin crater by various modes of activation analysis. Remarks on genesis of irghizites, J. Radioanal. Nucl. Chem., 2012, vol. 293, no. 1, pp. 359–376.CrossRefGoogle Scholar
  39. Mokhov, A.V., Analytical electron microscopy in studying ultradispersed fraction of regolith, I Vseross. mol. konf. “Mineraly, stroenie, svoistva, metody issledovaniya” (1rst All-Russian Conference “Minerals, Structure, Properties, and Methods of Study), Il’meny, 2009, p. 42.Google Scholar
  40. Palatnik, L.S., Fuks, M.Ya., and Kosevich, V.M., Mekhanizm obrazovaniya i substruktura kondensirovannykh plenok (Mechanism of Formation of Substructure of Condensed Films), Moscow: Nauka, 1972.Google Scholar
  41. Palme, H., Jansens, M.-J., Takahashi, H., et al., Meteoritic material at five large impact craters, Geochim. Cosmochim. Acta, 1978, vol. 42, no. 3, pp. 313–324.CrossRefGoogle Scholar
  42. Papike, J.J., Spilde, M.N., Fowler, G.W., et al., The Lodran primitive achondrite: petrogenetic insights from electron and ion microprobe analysis of olivine and orthopyroxene, Geochim. Cosmochim. Acta, 1995, vol. 59, no. 14, pp. 3061–3070.CrossRefGoogle Scholar
  43. Pierazzo, E. and Melosh, H.J., Hydrocode modelling of Chicxulub as an oblique impact event, Earth Planet. Sci. Lett., 1999, vol. 165, no. 2, pp. 163–176.CrossRefGoogle Scholar
  44. Razin, L.V., Rudashevskii, N.S., and Vyal’sov, L.N., New natural intermetallic compounds of aluminum, copper, and zinc: khatyrkite CuAl2, kupalite CuAl, and zinc aluminide, from hyperbasites of the dunite–harzburgite association, Zap. Vseross. Mineral. O-va, 1985, vol. 114, no. 1, pp. 90–100.Google Scholar
  45. Reid, A.M., Park, F.R., and Cohen, A.J., Synthetic metallic spherules in a philippine tektite, Geochim. Cosmochim. Acta, 1964, vol. 28, no. 6, pp. 1004–1010.CrossRefGoogle Scholar
  46. Rietmeijer, F.J.M., Nuth, J.A., Rochette, P., et al., Deep metastable eutectic condensation in Al–Fe–SiO–H2–O2 vapors: implications for natural Fe-aluminosilicates, Am. Mineral., 2006, vol. 91, pp. 1688–1698.CrossRefGoogle Scholar
  47. Samson, C., Butler, S., Fry, C., et al., 3-D laser images of splash-form tektites and their use in aerodynamic numerical simulations of tektite formation, Meteorit. Planet. Sci., 2014, vol. 49, no. 5, pp. 740–749.CrossRefGoogle Scholar
  48. Skublov, G.T. and Tyugai, O.M., Petrochemical model of the formation of tektite-like glasses of the Zhamanshin crater and its relation with lunar impact genesis, Zap. Vseross. Mineral. O-va, 2004, vol. 133, no. 6, pp. 95–117.Google Scholar
  49. Svettsov, V.V., Interaction of cosmic bodies with the Earth’s atmosphere and surface, Candidate (Fiz.-Mat.) Dissertation, Moscow: Inst. Cinamiki Geosfer RAN, 2008.Google Scholar
  50. Taylor, S.R. and McLennan, S.M., Chemical relationships among irghizites, Zhamanshinites, Australasian tektites and Henbury impact glasses, Geochim. Cosmochim. Acta, 1979, vol. 43, no. 9, pp. 1551–1565.CrossRefGoogle Scholar
  51. Thorpe, A.N. and Senftle, F.E., Submicroscopic spherules and color of tektites, Geochim. Cosmochim. Acta, 1964, vol. 28, no. 6, pp. 981–994.CrossRefGoogle Scholar
  52. Val’ter, A.A., Geochemical signs of impactite contamination by meteorite matter, Kosmicheskoe veshchestvo na Zemle (Cosmic Matter on the Earth), Kiev: Nauk. dumka, 1982, pp. 104–110.Google Scholar
  53. Val’ter, A.A. and Ryabenko, V.A., Vzryvnye kratery Ukrainskogo shchita (Explosion Craters of the Ukrainian Shield), Kiev: Nauk. dumka, 1977.Google Scholar
  54. Vêtviĉka, I., Frank, J., and Drtina, J., Electron microprobe analysis (WDS EPMA) of Zhamanshin glass reveals the impactor and a common role of accretion in the origin of splash-form impact glass, in 11th European Workshop on Modern Developments and Applications in Microbeam Analysis, 2010. IOP Conf Ser: Materials Science and Engineering, 2010, vol. 7, no. 1, 012029.Google Scholar
  55. Yakovlev, O.I., Dikov, Yu.P., Gerasimov, M.V., et al., Experimental investigation of factors controlling the composition of glasses from the lunar regolith, Geochem. Int., 2003, vol. 41, no. 5, pp. 417–430.Google Scholar
  56. Yudin, I.A. and Kolomenskii, V.D., Mineralogiya meteoritov (Mineralogy of Meteorites), Sverdlovsk: UNTs AN SSSR, 1987.Google Scholar
  57. Zamyshlyaev B.V., Maslin E.P., Loborev V.M., Shilobreev B.A. Fizika yadernogo vzryva (Physics of Nuclear Blasts). T.1. M.: Fizmatlit, 1997. 552 s.Google Scholar
  58. Zbik, M., Jasieniak, M., and Smart, R.St.C., Organo silane occurrence in irghizite samples from the Zhamanshin impact crater, Kazakhstan, Meteorit. Planet. Sci, 2000, vol. 35, no. 5, pp. 943–947.CrossRefGoogle Scholar
  59. Zel’dovich B., Raizer Yu. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Blast Pressure Waves and High-Temperature Hydrodynamic Phenomena). M.: Fizmatlit, 2008. 656 s.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. A. Gornostaeva
    • 1
  • A. V. Mokhov
    • 1
  • P. M. Kartashov
    • 1
  • O. A. Bogatikov
    • 1
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM)Russian Academy of SciencesMoscowRussia

Personalised recommendations