Petrology

, Volume 26, Issue 1, pp 65–81 | Cite as

Ultrapotassic Volcanism of the Valagin Ridge, Kamchatka

Article
  • 1 Downloads

Abstract

New isotopic-geochemical data are reported on the Late Cretaceous–Paleocene ultrapotassic volcanic rocks of the alkaline–ultrabasic complex of the Valagin Ridge, Eastern Kamchatka. The high Mg, low Ca and Al contents at high K/Na ratios in these rocks make them similar to the Mediterranean-type lamproites and ultrapotassic rocks. The low contents of high-field strength (HFSE) and heavy rare-earth (HREE) elements relative to the MORB composition, and the low Sr and high Nd isotopic ratios indicate the formation of their primary melts from a depleted mantle source. The enrichment of the ultrapotassic rocks in the large-ion lithophile elements (LILE) can be explained by the fluid influx in melts during melting of subsided oceanic crust.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, J.F. and Carmichael, I.S.E., Lamprophyric lavas in the Colima graben, sw mexico, Contrib. Mineral. Petrol., 1984, vol. 88, pp. 203–216.CrossRefGoogle Scholar
  2. Boari, E., Avanzinelli, R., Melluso, L., et al., Isotope geochemistry (Sr-Nd-Pb) and petrogenesis of leucite-bearing volcanic rocks from “Colli Albani” volcano, Roman Magmatic Province, Central Italy: inferences on volcano evolution and magma genesis, Bull. Volcanol., 2009, vol. 71, pp. 977–1005.Google Scholar
  3. Brenan, J.M., Shaw, H.F., Ryerson, F.J., et al., Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt, Earth Planet. Sci. Lett., 1995, vol. 135, pp. 1–11.CrossRefGoogle Scholar
  4. Condie, K., High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos, 2005, vol. 79, pp. 491–504.CrossRefGoogle Scholar
  5. Erlikh, E.N., Shantser, A.E., and Kutyev, F.Sh., Meymechites of Eastern Kamchatka, Izv. Akad Nauk SSSR, Ser. Geol., 1971, no. 2, pp. 3–9.Google Scholar
  6. Evensen, N.M., Hamilion, P.J., and O’Nions, R.K., Rare earth abundances in chondritic meteorites, Geochim. Cosmochim. Acta, 1978, vol. 42, pp. 1199–1212.CrossRefGoogle Scholar
  7. Fitton, J.G., James, D., Kempton, P.D., et al., The role of lithospheric mantle in the generation of Late Cenozoic basic magmas in the Western United States, in Oceanic and Continental Lithosphere: Similarities and Differences, Cox, K.G. and Menzies, M.A., Eds., J. Petrol., 1988, Sp. Volume, pp. 331–349.Google Scholar
  8. Fitton, J.G., Saunders, A.D., Norry, M.J., et al., Thermal and chemical structure of the Iceland plume, Earth Planet. Sci. Lett., 1997, vol. 153, pp. 197–208.CrossRefGoogle Scholar
  9. Foley, S.F., The Origin of Ultrapotassic Igneous rocks, Ph. D. Thesis, Hobart, Univ. of Tasmania, 1986.Google Scholar
  10. Foley, S.F., Venturelli, G., Green, D.H., and Toscani, L., The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models, Earth Sci. Rev., 1987, vol. 24, pp. 81–134.CrossRefGoogle Scholar
  11. Furman, T. and Graham, D., Erosion of lithospheric mantle beneath the East African rift system: geochemical evidence from the Kivu volcanic province, Lithos, 1999, vol. 48, pp. 237–262.CrossRefGoogle Scholar
  12. Green, T.H., Blundy, J.D., Adam, J., et al., SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5GPa and 1080–1200oc, Lithos, 2000, vol. 53, pp. 165–187.CrossRefGoogle Scholar
  13. Hofmann, A.W., Jochum, K.P., and Seufert, M., Nd and Pb in oceanic basalts: new constraints on mantle evolution, Earth Planet. Sci. Lett., 1986, vol. 79, pp. 33–45.CrossRefGoogle Scholar
  14. Irvine, T.N. and Baragar, W.R.A., A guide to the chemical classification on the common volcanic rocks, Can. J. Earth Sci., 1971, vol. 8, pp. 523–548.CrossRefGoogle Scholar
  15. Izmenenie okruzhayushchei sredy i klimata: prirodnye i svyazannye s nimi tekhnogennye katastrofy v 8-mi tomakh. T. 2. Noveishii vulkanizm Severnoi Evrazii: zakonomernosti razvitiya, vulkanicheskaya opasnost', svyaz' s glubinnymi protsessami i izmeneniyami prirodnoi sredy i klimata (Envronmental and Climatic Changes. Volume 2. Youngest Volcanism of Northern Eurasia: Tendencies of Evolution, Volcanic Danger, Relation with Endogenous Processes, and environmental and climatic changes), Kovalenko, V.I., Yarmolyuk, V.V., and Bogatikov, O.A., Eds., Moscow: IGEM RN, IFZ RAN, 2008.Google Scholar
  16. Johnson, M.C. and Plank, T., Dehydration and melting experiments constrain the fate of subducted sediments, Geochem. Geoph. Geosyst., 1999, vol. 1.Google Scholar
  17. Kamenetsky, V.S., Sobolev, A.V., Joron, J.-L., and Semet, M.P., Petrology and geochemistry of Cretaceous ultramafic volcanics from eastern Kamchatka, J. Petrol., 1995, vol. 36, pp. 637–662.CrossRefGoogle Scholar
  18. Leslie, R.A.J., Danyushevsky, L.V., Crawford, A.J., and Verbeeten, A.C., Primitive shoshonites from Fiji: geochemistry and source components, Geochem. Geophys. Geosyst., 2009, vol. 10. doi 10.1029/2008GC002326Google Scholar
  19. Markovskii, B.A. and Rotman, V.K., Geologiya i petrologiya ul’traosnovnogo vulkanizma (Geology and Petrology of Ultrabasic Volcanism), Leningrad: Nedra, 1981.Google Scholar
  20. Markovskii, B.A. and Rotman, V.K., On geosynclinal meymechites of Kamchatka, Dokl. Akad. Nauk SSSR, 1971, vol. 196, no. 3, pp. 675–678.Google Scholar
  21. McCulloch, M.T. and Gamble, J.A., Geochemical and geodynamical constraints on subduction zone magmatism, Earth Planet. Sci. Lett., 1991, vol. 102, pp. 358–374.CrossRefGoogle Scholar
  22. Miller, D.M., Goldstein, S.L., and Langmuir, C.H., Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents, Nature, 1994, vol. 368, pp. 514–520.CrossRefGoogle Scholar
  23. Munker, S., Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: source constraints and application of refined ICPMS techniques, Chem. Geol., 1998, vol. 144, nos. 1–2, pp. 23–45.Google Scholar
  24. Pearce, J.A., Role of sub-continental lithosphere in magma series at active continental margins, Continental Basalts and Mantle Xenoliths, Hawkesworth, C. J. and Norry, M.J., Basel: Birkhauser, 1983.Google Scholar
  25. Pearce, J.A., Kempton, P.D., Nowell, G.M., and Noble, S.R., Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western pacific arc-basin systems, J. Petrol., 1999, vol. 40, pp. 1579–1611.CrossRefGoogle Scholar
  26. Peccerillo, A. and Taylor, S.R., Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, Norhern Turkey, Contrib. Mineral. Petrol., 1976, vol. 58, pp. 63–81.CrossRefGoogle Scholar
  27. Pertermann, M. Hirschmann, M.M., et al., Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite, Geochem. Geophys. Geosyst., 2004, vol. 22. doi 10.1029/2003GC000638Google Scholar
  28. Pfander, J.A. Weyer, S., et al., Evolution of planetary cores and the Earth–Moon system from Nb/Ta systematics, Science, 2003, vol. 301, no. 7, pp. 84–87.Google Scholar
  29. Plank, T. and Langmuir, C., Tracing trace elements from sediment input to volcanic output at subduction zones, Nature, 1993, vol. 362, pp. 739–742.CrossRefGoogle Scholar
  30. Plank, T. and Langmuir, C.H., The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 1998, vol. 145, pp. 325–394.CrossRefGoogle Scholar
  31. Prelevic, D., Foley, S.F., Romer, R., and Conticelli, S., Mediterranean tertiary lamproites derived from multiple source components in postcollisional geodynamics, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 2125–2156.CrossRefGoogle Scholar
  32. Rasskazov, S.V., Prikhod’ko, V.S., Yasnygina, T.A., et al., Mantle sources of the Cenozoic volcanic rocks of the Lake Kizi region in the eastern Sikhote Alin (commented by reviewer Yu. A. Martynov), Russ. J. Pac. Geol., 2010, vol. 4, no. 5, pp. 441–460.CrossRefGoogle Scholar
  33. Rudnick, R. and Gao, S., Treatise on Geochemistry. Volume 3. Composition of the Continental Crust, Holland, H.D. and Turekian, K.K., Eds., Oxford: Elsevier-Pergamon, 2003.Google Scholar
  34. Seliverstov, V.A., Thermobarophile mineral parageneses of diamondiferous alkaline-ultrabasic volcanic complex of East Kamchatka, Vest. KRAUNTs. Nauki o Zemle, 2009, vol. 13, pp. 10–30.Google Scholar
  35. Seliverstov, V.A., Koloskov, A.V., and Chubarov, V.M., Lamproite-like potassic alkaline-ultrabasic rocks of the Valaginsky Range, East Kamchatka, Petrologiya, 1994, vol. 2, pp. 197–213.Google Scholar
  36. Seliverstov, V.A. and Puzankov, Yu.M., Magmatic complexes of the Late Mesozoic eugeosynclines, Geokhimicheskaya tipizatsiya magmaticheskikh i metamorficheskikh porod Kamchatki (Geochemical Typification of Magmatic and Metamorphic Rocks of Kamchatka), Krivenko, A.P, Eds., Novosibirsk: IGiG SO AN SSSR, 1990, pp. 34–72.Google Scholar
  37. Seliverstov, V.A. and Tsikunov, A.G., Meymechites of the northern Valaginsky Range (East Kamchatka), Dokl. Akad. Nauk SSSR, 1974, vol. 217, no. 2, pp. 424–427.Google Scholar
  38. Sobolev, A.V., Kamenetsky, V.S., and Kononkova, N.N., New petrological and geochemical data on the ultramafic volcanic rocks of the Valaginsky Range (East Kamchatka), Geokhimiya, 1989, no. 1, pp. 1694–1709.Google Scholar
  39. Stalder, R., Foley, S.F., Brey, G.P., and Horn, I., Mineralaqueous fluid partitioning of trace elements at 900–1200oC and 3.0–5.7 GPa: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism, Geochim. Cosmochim. Acta, 1998, vol. 62, pp. 1781–1801.CrossRefGoogle Scholar
  40. Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in the Ocean Basins, Saunders, A.D. and Norry, M.J., Eds., Geol. Soc. Spec. Publ., 1989, vol. 42, pp. 313–345.CrossRefGoogle Scholar
  41. Tsukanov N.V., Skolotnev S.G., Kovalenko D.V. New data on the composition of island-arc volcanic rocks in the Eastern Mountain Range, Kamchatka, Dokl. Earth Sci., 2008, vol. 418, pp. 65–61.CrossRefGoogle Scholar
  42. Di Vincenzo, G. and Rocchi, S., Origin and interaction of mafic and felsic magmas in an evolving late orogenic setting: the Early Paleozoic Terra Nova intrusive complex, Antarctica, Contrib. Mineral. Petrol., 1999, vol. 137, pp. 15–35.CrossRefGoogle Scholar
  43. Zinkevich, V.P., Konstantinovskaya, E.A., Tsukanov, N.V., et al., Akkretsionnaya tektonika Vostochnoi Kamchatki (Accretionary Tectonics of East Kamchatka), Moscow: Nauka, 1993.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Geological Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations