Advertisement

Petrology

, Volume 26, Issue 1, pp 47–64 | Cite as

Genesis of the Paleoproterozoic Rare-Metal Granites of the Katugin Massif

  • T. V. Donskaya
  • D. P. Gladkochub
  • E. V. Sklyarov
  • A. B. Kotov
  • A. M. Larin
  • A. E. Starikova
  • A. M. Mazukabzov
  • E. V. Tolmacheva
  • S. D. Velikoslavinskii
Article
  • 36 Downloads

Abstract

We studied the petrography, mineralogy, and geochemistry of the Paleoproterozoic (2.06 Ga) granites of the Katugin massif (Stanovoy suture zone), which hosts the combined rare-metal Katugin deposit. Three groups of granites were distinguished: (1) biotite (Bt) and biotite–riebeckite (Bt–Rbk) granites of the western block of the massif; (2) biotite–arfvedsonite (Bt–Arf) granites of the eastern block; and (3) arfvedsonite (Arf), aegirine–arfvedsonite (Aeg–Arf), and aegirine (Aeg) granites of the eastern block. The Bt and Bt–Rbk granites of the first group are mainly metaluminous and peraluminous rocks with rather high CaO contents and the minimum F contents among the granites described here. It was suggested that the granites of this group could be derived from a source dominated by crustal rocks with a small addition of mantle materials. These granites probably crystallized from a metaluminous–peraluminous melt with elevated CaO and moderate F contents. Melts of such compositions are least favorable for the crystallization of ore minerals. The Bt–Arf granites of the second group are mainly peralkaline and show high contents of CaO and Y and low contents of Na2O and F. A mixed mantle–crust source was proposed for the Bt–Arf granites. The initial melt of the Bt–Arf granites could have a peralkaline composition with elevated CaO content and moderate to high F content. The Arf, Aeg–Arf, and Aeg granites of the third group are enriched in ore mineral and were classified as peralkaline granites with very low CaO contents, elevated Na2O and F contents, and usually very high contents of Zr, Hf, Nb, and Ta. Based on the geochemical and isotopic data, it was supposed that the source of the granites of the third group could be derivatives of basaltic magmas produced in an OIB-type source with a minor addition of crustal material to the magma generation zone. It was suggested that the primary melt of this granite group could be a peralkaline CaO-poor and F-rich silicic melt, which is most favorable for the crystallization of ore minerals. Based on the analysis of the geochemical characteristics of the three granite groups and their relationships within the Katugin massif, a qualitative model of its formation was proposed. According to this model, the Bt and Bt–Rbk granites of the western block crystallized first, followed by the Bt–Arf granites of the eastern block and, eventually, the Arf, Aeg–Arf, and Aeg granites enriched in ore minerals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agangi, A., Kamenetsky, V.S., and McPhie, J., The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: insights from the Gawler Range volcanics, South Australia, Chem. Geol., 2010, vol. 273, pp. 314–325.Google Scholar
  2. Arkhangel’skaya, V.V., Kazanskii, V.I., Prokhorov, K.V., and Sobachenko, V.N., Geological structure, zoning, and conditions of formation of the Katugin Ta–Nb–Zr-deposit (Chara–Udokan district, East Siberia), Geol. Rudn. Mestorozhd., 1993, vol. 35, no. 2, pp. 115–131.Google Scholar
  3. Arkhangel’skaya, V.V., Ryabtsev, V.V., and Shuriga, T.N., Geologic structure and mineralogy of the tantalum deposits of Russia, Mineral’noe Syr’e (Mineral Resources), Moscow: VIMS, 2012, vol. 25.Google Scholar
  4. Bonin, B., A-type granites and related rocks: evolution of a concept, problems and prospects, Lithos, 2007, vol. 97, pp. 1–29.CrossRefGoogle Scholar
  5. Bykov, Yu.V. and Arkhangel’skaya, V.V., Katugin raremetal deposit, in Mestorozhdeniya Zabaikal’ya (Deposits of Transbaikalia), Laverov, N.P. Ed., Moscow: Geoinformmark, 1995, vol. 1, book 2, pp. 76–85.Google Scholar
  6. Dostal, J. and Shellnutt, J.G., Origin of peralkaline granites of the Jurassic Bokan Mountain Complex (southeastern Alaska) hosting rare metal mineralization, Int. Geol. Rev., 2016, vol. 58, pp. 1–13.CrossRefGoogle Scholar
  7. Dostal, J., Kontak, D.J., and Karl, S.M., The Early Jurassic Bokan Mountain peralkaline granitic complex (southeastern Alaska): geochemistry, petrogenesis and rare-metal mineralization, Lithos, 2014, vol. 202-203, pp. 395–412.CrossRefGoogle Scholar
  8. Eby, N., Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications, Geology, 1992, vol. 20, pp. 641–644.CrossRefGoogle Scholar
  9. Frost, B.R. and Frost, C.D., A geochemical classification for feldspathic rocks, J. Petrol., 2008, vol. 49, pp. 1955–1969.CrossRefGoogle Scholar
  10. Frost, C.D. and Frost, B.R., On ferroan (A-type) granites: their compositional variability and modes of origin, J. Petrol., 2011, vol. 52, pp. 39–53.CrossRefGoogle Scholar
  11. Frost, B.R., Barnes, C.G., Collins, W.J., et al., A geochemical classification for granitic rocks, J. Petrol., 2001, vol. 42, pp. 2033–2048.CrossRefGoogle Scholar
  12. Gladkochub, D.P., Donskaya, T.V., Sklyarov, E.V. et al., The unique Katugin rare-metal deposit (southern Siberian Craton): an age and genesis constrains, Ore Geol. Rev., (in press).Google Scholar
  13. Gramenitskii, E.N., Shchekina, T.I., and Devyatova, V.N., Fazovye otnosheniya vo ftorsoderzhashchei granitnoi i nefelinsienitovoi sistemakh i raspredelenie elementov mezhdu fazami (Phase Relations in F-bearing Granite and Nepheline-Syenite Systems and Element Partitioning between Phases), Moscow: GEOS, 2005.Google Scholar
  14. Grebennikov, A.V., A-type granites and related rocks: problems of identification, petrogenesis, and classification, Russ. Geol. Geophys., 2014, vol. 55, no. 9, pp. 1356–1373.CrossRefGoogle Scholar
  15. Huang, H., Zhang, Z., Santosh, M., and Zhang, D., Geochronology, geochemistry and metallogenic implications of the Boziguo’er rare metal-bearing peralkaline granitic intrusion in south Tianshan, NW China, Ore Geol. Rev., 2014, vol. 61, p. 157–174.CrossRefGoogle Scholar
  16. Kotov, A.B., Vladykin, N.V., Larin, A.M., et al., New data on the age of ore formation in the unique Katugin raremetal deposit (Aldan Shield), Dokl. Earth Sci., 2015, vol. 463, no. 2, pp. 663–667.CrossRefGoogle Scholar
  17. Larin, A.M., Kotov, A.B., Sal’nikova, E.B., et al., Age of the Katugin Ta–Nb deposit, Aldan–Stanovoi Shield: evidence for the identification of the global rare metal metallogenic epoch, Dokl. Earth Sci., 2002, vol. 383, no. 6. pp. 336–339.Google Scholar
  18. Larin, A.M., Kotov, A.B., Velikoslavinskii, S.D., et al., Early Precambrian A-granitoids in the Aldan Shield and adjacent mobile belts: sources and geodynamic environments, Petrology, 2012, vol. 20, no. 3, pp. 218–239.CrossRefGoogle Scholar
  19. Larin, A.M., Kotov, A.B., Vladykin, N.V., et al., Rare metal granites of the Katugin Complex (Aldan Shield): sources and geodynamic formation settings, Dokl. Earth Sci. 2015, vol. 464, no. 1, pp. 889–893.CrossRefGoogle Scholar
  20. Levashova, E.V., Skublov, S.G., Marin, Yu.B., et al., Trace elements in zircon from the rocks of the Katugin rare-metal deposit, Zap. Vseross. Mineral, O-va, 2014, vol. 143, no. 5, pp. 17–31.Google Scholar
  21. Manning, D.A.C., The effect of fluorine on liquidus phase relationships in the system Qz–Ab–Or with excess water at 1 kb, Contrib. Mineral. Petrol., 1981, vol. 76, pp. 206–215.CrossRefGoogle Scholar
  22. Markl, G., Marks, M., Schwinn, G., and Sommer, H., Phase equilibrium constraints on intensive crystallization parameters of the Ilimaussaq Complex, South Greenland, J. Petrol., 2001, vol. 42, pp. 2231–2258.CrossRefGoogle Scholar
  23. Osokin, E.D., Altukhov, E.N., and Kravchenko, S.M., Criteria and formation and localization conditions of giant rare element deposits, Geol. Ore Deposits, 2000, vol. 42, no. 4, pp. 351–357.Google Scholar
  24. Pearce, J.A., Harris, N.B.W., and Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 1984, vol. 25, pp. 956–983.CrossRefGoogle Scholar
  25. Petrograficheskii kodeks Rossii. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya (Petrographic Code of Russia. Magmatic, Metamorphic, Metasomatic, and Impact Rocks), Bogatikov, O.A, Petrov, O.V, and Morozov, A.F, Eds., Moscow: VSEGEI, 2009.Google Scholar
  26. Podkovyrov, V.N., Kotov, A.B., Larin, A.M., et al., Sources and provenances of Lower Proterozoic terrigenous rocks of the Udokan Group, southern Kodar–Udokan Depression: results of Sm–Nd isotopic investigations, Dokl. Earth Sci., 2006, vol. 408, pp. 518–522.CrossRefGoogle Scholar
  27. Prokhorov, K.V. and Sobachenko, V.N., Structural-petrological and geochemical conditions of formation of ore-bearing high-temperature sodic metasomatites, Vnutrennee stroenie rudonosnykh dokembriiskikh razlomov (Internal Structure of Precambrian Ore-Bearing Faults), Tomson, I.N., Ed., Moscow: Nauka, pp. 94–121.Google Scholar
  28. Ryabtsev, V.V., Chistov, L.B., and Shuriga, T.N., Tantalum ores of Russia: state and prospects of development of the mineral-raw base, Mineral’noe syr’e. Seriya geologo-ekonomicheskaya (Mineral Raw Material. Geological–Economic Series), Moscow: VIMS, 2006, no. 21.Google Scholar
  29. Savel’eva, V.B., Bazarova, E.P., Khromova, E.A., and Kanakin, S.V., Fluorides and fluorcarbonates in the rocks of the Katugin Complex (East Siberia), Zap. Vseross. Mineral. O-va, 2016, vol. 145, no. 2, pp. 1–19.Google Scholar
  30. Scaillet, B. and Macdonald, R., Phase relations of peralkaline silicic magmas and petrogenetic implications, J. Petrol., 2001, vol. 42, pp. 825–845.CrossRefGoogle Scholar
  31. Schonenberger, J., Kohler, J., and Markl, G., REE systematics of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland, Chem. Geol., 2008, vol. 247, pp. 16–35.CrossRefGoogle Scholar
  32. Sharpenok, L.N., Kostin A.E., and Kukharenko, E.A., TAS-diagram of total alkali–silica for the chemical classification and identification of plutonic rocks, Regional. Geol. Metallogen., 2013, no. 56, pp. 40–50.Google Scholar
  33. Sharygin, V.V., Zubkova, N.V., Pekov, I.V., et al., Lithiumcontaining Na–Fe-amphibole from cryolite rocks of the Katugin rare-metal deposit (Transbaikalia, Russia): chemical features and crystal structure, Russ. Geol. Geophys., 2016, vol. 57, no. 8, pp. 1511–1526.Google Scholar
  34. Shchekina, T.I., Gramenitskii, E.N., and Alfer’eva, Ya.O., Leucocratic magmatic melts with the maximum fluorine concentrations: experiment and relations in nature, Petrology, 2013, vol. 21, no. 5, pp. 454–470.CrossRefGoogle Scholar
  35. Sklyarov, E.V., Starikova, A.E., Sharygin, V.V., and Khromova, E.A., Metasomatic nature of mineralization of the Katugin rare-metal deposit: pro and contra, Geologiya i mineral’no-syr’evye resursy severo-vostoka Rossii. Vserossiiskaya nauchno-prakticheskaya konferentsiya (Geology and Mineral Resources of Northeastern Russia. All-Russian Practical Conference), Yakutsk, 2015, pp. 446–448.Google Scholar
  36. Sklyarov, E.V., Gladkochub, D.P., Kotov, A.B., et al., Genesis of the Katugin rare-metal ore deposit: magmatism versus metasomatism, Russ. J. Pac. Geol., 2016, vol. 10, no. 3, pp. 155–167.CrossRefGoogle Scholar
  37. Starikova, A.E., Sharygin, V.V., and Sklyarov, E.V. Badominant fluoroaluminates from the Katugin rare-metal deposit (Transbaikalia, Russia), Dokl. Earth Sci., 2017, vol. 472, pp. 67–71.CrossRefGoogle Scholar
  38. Tuttle, O.F. and Bowen, N.L., Origin of granite in the light of experimental studies in the system NaAiSi3O8–KAlSi3O8–SiO2–H2O, Geol. Soc. Am., 1958, vol. 74, pp. 182–234.Google Scholar
  39. Wakita, H., Schmitt, R.A., and Rey, P., Elemental abundances of major, minor, and trace elements in Apollo 11 lunar rocks, soil and core samples, Proceedings of the Apollo 11 Lunar Sci. Conf., New York, USA (Pergamon, New York, 1970), pp. 1685–1717.Google Scholar
  40. Webster, J.D., Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt, Contrib. Mineral. Petrol., 1990, vol. 104, p. 424–438.CrossRefGoogle Scholar
  41. Webster, J.D., Holloway, J.R., and Hervig, R.L., Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt, Econ. Geol., 1989, vol. 84, pp. 116–134.CrossRefGoogle Scholar
  42. Webster, J., Thomas, R., Forster, H.J., et al., Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin–tungsten mining district, Erzgebirge, Germany, Mineral. Deposita, 2004, vol. 39, pp. 452–472.Google Scholar
  43. Whalen, J.B., Currie, K.L., and Chappel, B.W., A-type granites: geochemical characteristics and petrogenesis, Contrib. Mineral. Petrol., 1987, vol. 95, pp. 407–419.CrossRefGoogle Scholar
  44. Xiong, X.-L., Zhao, Z.-H., Zhu, J.-C., and Rao, B., Phase relations in albite granite–H2O–HF system and their petrogenetic applications, Geochem. J., 1999, vol. 33, p. 199–214.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. V. Donskaya
    • 1
  • D. P. Gladkochub
    • 1
  • E. V. Sklyarov
    • 1
    • 2
  • A. B. Kotov
    • 3
  • A. M. Larin
    • 3
  • A. E. Starikova
    • 4
  • A. M. Mazukabzov
    • 1
  • E. V. Tolmacheva
    • 3
  • S. D. Velikoslavinskii
    • 3
  1. 1.Institute of the Earth’s Crust, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Far East Federal UniversityVladivostokRussia
  3. 3.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations