Ultrastructural Organization of Ventral Mesencephalic Neurons Derived from Human Induced Pluripotent Stem Cells


Introduction. The study of neuronal differentiation of human induced pluripotent stem cells (iPSCs) offers wide prospects for modeling and analyzing the pathogenesis of human neurodegenerative brain diseases, screening the drugs for efficacious treatment, and obtaining specific cell material for personalized neurotransplantation.

The aim of this study

was to examine the ultrastructural properties of iPSCs reprogrammed from healthy donor fibroblasts and differentiated into ventral mesencephalic neurons on day 7, 14 and 19 in vitro.

Materials and methods

. We used a previously obtained iPSC cell line from a healthy donor. Cell differentiation was performed according to a previously designed protocol with modifications. Ultrathin sections (50–70 nm) of cultures embedded in Epon were contrasted with uranyl acetate and lead citrate, and then examined with the JEOL JEM-1011 transmission electron microscope (Japan).


. By day 19 in vitro, the study material contained cells, most of which were very similar in their fine structure to mature neurons: they contained the Golgi apparatus and emerging Nissl bodies, and had formed various junctions with each other, including symmetric, asymmetric and mixed avesicular contacts, which preceded the formation of mature chemical synapses. An important ultrastructural criterion for synaptic development and maturation was the appearance of large granular vesicles, corresponding to “transport packages” necessary for the construction of the synaptic active zone and involving in the formation and differentiation of both postsynaptic and presynaptic structures.


s. Our results suggest that ultrastructural changes in iPSCs differentiable into neurons, in the early stages of cultivation, reproduce the changes observed in early embryogenesis of the human brain, with their cellular composition resembling a neural tube containing mitotic neuroepithelial cells, radial glia, and maturing neurons. In the future, ultrastructural study of changes in iPSCs development, obtained from patients and undergoing neuronal differentiation after genome editing, will allow us to morphologically assess the degree of genetic defect elimination in transplantable cells.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    Novosadova, E.V. and Grivennikov, I.A., Induced pluripotent stem cells: from production to application in biochemical and biomedical researches, Usp. Biol. Khim., 2014, vol. 54, pp. 3–38.

    Google Scholar 

  2. 2

    Vetchinova, A.S., Konovalova, E.V., Lunev, E.A., and Illarioshkin, S.N., A genome editing technology and capabilities of its application in cellular neurobiology, Ann. Clin. Exp. Neurol., 2014, vol. 9, no. 4, pp. 59–64.

    Google Scholar 

  3. 3

    Capetian, P., Müller, L., Volkmann, J., et al., Visualizing the synaptic and cellular ultrastructure in neurons differentiated from human induced neural stem cells—an optimized protocol, Int. J. Mol. Sci., 2020, vol. 21, no. 5, p. 1708. https://doi.org/10.3390/ijms21051708

    CAS  Article  PubMed Central  Google Scholar 

  4. 4

    Novosadova, E.V., Manuilova, E.S., Arsenyeva, E.L., et al., Fibroblast-like cells as an effective feeder for the cultivation and derivation of new lines of human induced pluripotent stem cells, Dokl. Biochem. Biophys., 2016, vol. 470, no. 1, pp. 353–356. https://doi.org/10.1134/S1607672916050136

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Lebedeva, O.S., Novosadova, E.V., Manuilova, E.S., et al., Obtaining and characterization of a cell model of Parkinson’s disease based on induced pluripotent stem cells, in Stvolovye kletki i regenerativnaya meditsina (Stem Cells and Regenerative Medicine), Moscow: Mosk. Gos. Univ., 2014, pp. 158–168.

  6. 6

    Hu, B.Y., Weick, J.P., Yu, J., et al., Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 9, pp. 4335–4340. https://doi.org/10.1073/pnas.0910012107

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Mariani, J., Simonini, M.V., Palejev, D., Tomasini, L., et al., Modeling human cortical development in vitro using induced pluripotent stem cells, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 31, pp. 12770–12775. https://doi.org/10.1073/pnas.1202944109

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Paşca, A.M., Sloan, S.A., Clarke, L.E., et al., Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture, Nat. Methods, 2015, vol. 12, no. 7, pp. 671–678. https://doi.org/10.1038/nmeth.3415

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Tao, Y. and Zhang, S.C., Neural subtype specification from human pluripotent stem cells, Cell Stem Cell, 2016, vol. 19, no. 5, pp. 573–586. https://doi.org/10.1016/j.stem.2016.10.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Salikhova, D.I., Fedyunina, I.A., Bukharova, T.B., et al., Key stages of IPSC differentiation into neuronal and glial cells, Genes Cells, 2018, vol. 13, no. 3, pp. 52–55. https://doi.org/10.23868/201811033

    Article  Google Scholar 

  11. 11

    Perrier, A.L., Tabar, V., Barberi, T., et al., Derivation of midbrain dopamine neurons from human embryonic stem cells, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 12543–12548. https://doi.org/10.1073/pnas.0404700101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Espuny-Camacho, I., Michelsen, K.A., Gall, D., et al., Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo, Neuron, 2013, vol. 77, no. 3, pp. 440–456. https://doi.org/10.1016/j.neuron.2012.12.011

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., et al., Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals, Cell Stem Cell, 2008, vol. 3, no. 5, pp. 519–532. https://doi.org/10.1016/j.stem.2008.09.002

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Brooks, P.T., Rasmussen, M.A., and Hyttel, P., Structural analysis of three-dimensional human neural tissue derived from induced pluripotent stem cells, J. Stem Cell Res. Ther., 2016, vol. 6, p. 337. https://doi.org/10.4172/2157-7633.1000337

    CAS  Article  Google Scholar 

  15. 15

    Pereda, A.E., Electrical synapses and their functional interactions with chemical synapses, Nat. Rev. Neuros-ci., 2014, vol. 15, no. 4, pp. 250–263. https://doi.org/10.1038/nrn3708

    CAS  Article  Google Scholar 

  16. 16

    Maksimova, E.V., The main stages of nerve cell differentiation, in Neiroontogenez (Neuroontogenesis), Moscow: Nauka, 1985, pp. 6–77.

    Google Scholar 

  17. 17

    Bogolepov, N.N., Yakovleva, N.I., Frumkina, L.E., and Koroleva, S.K., Various types of non-synaptic intercellular contacts in the developing rat brain, Arkh. Anat., Gistol. Embriol., 1986, vol. 90, no. 2, pp. 45–53.

    CAS  Google Scholar 

  18. 18

    Wenisch, S., Trinkaus, K., Hild, A., et al., Immunochemical, ultrastructural and electrophysiological investigations of bone-derived stem cells in the course of neuronal differentiation, Bone, 2006, vol. 38, no. 6, pp. 911–921. https://doi.org/10.1016/j.bone.2005.10.021

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Frumkina, L.E. and Khaspekov, L.G., Contemporary conceptions about the development of chemical synapses and molecular mechanisms of synaptogenesis in the central nervous system, Neurochem. J., 2003, vol. 20, no. 3, pp. 165–178.

    CAS  Google Scholar 

  20. 20

    Ahmari, S.E., Buchanan, J., and Smith, S.J., Assembly of presynaptic active zones from cytoplasmic transport packets, Nat. Neurosci., 2000, vol. 3, no. 5, pp. 445–451. https://doi.org/10.1038/74814

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Garner, C.C., Zhai, R.G., Gundelfinger, E.D., and Ziv, N.E., Molecular mechanisms of CNS synaptogenesis, Trends Neurosci., 2002, vol. 25, no. 5, pp. 243–251. https://doi.org/10.1016/s0166-2236(02)02152-5

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Ziv, N.E. and Garner, C.C., Principles of glutamatergic synapse formation: seeing the forest for the trees, Curr. Opin. Neurobiol., 2001, vol. 11, no. 5, pp. 536–543. https://doi.org/10.1016/s0959-4388(00)00246-4

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Ray, B., Chopra, N., Long, J.M., and Lahiri, D.K., Human primary mixed brain cultures: preparation, differentiation, characterization and application to neuroscience research, Mol. Brain, 2014, vol. 7, p. 63. https://doi.org/10.1186/s13041-014-0063-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Fletcher, T.L., De Camilli, P., and Banker, G., Synaptogenesis in hippocampal cultures: evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development, J. Neurosci., 1994, vol. 14, no. 11, pp. 6695–6706. https://doi.org/10.1523/JNEUROSCI.14-11-06695.1994

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Matteoli, M., Verderio, C., Krawzeski, K., et al., Mechanisms of synaptogenesis in hippocampal neurons in primary culture, J. Physiol. (Paris), 1995, vol. 89, no. 1, pp. 51–55. https://doi.org/10.1016/0928-4257(96)80551-1

    CAS  Article  Google Scholar 

  26. 26

    Vicario-Abejón, C., Collin, C., McKay, R.D., and Segal, M., Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons, J. Neurosci., 1998, vol. 18, no. 18, pp. 7256–7271. https://doi.org/10.1523/JNEUROSCI.18-18-07256.1998

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Zhang, Z.N., Freitas, B.C., Qian, H., et al., Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 12, pp. 3185–3190. https://doi.org/10.1073/pnas.1521255113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Waitt, A.E., Reed, L., Ransom, B.R., and Brown, A.M., Emerging roles for glycogen in the CNS, Front. Mol. Neurosci., 2017, vol. 10, p. 73. https://doi.org/10.3389/fnmol.2017.00073

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Pannese, E., Neurocytology: Fine Structure of Neurons, Nerve Processes, and Neuroglial Cells, New York: Springer-Verlag, 1994.

    Google Scholar 

  30. 30

    Massa, P.T. and Mugnaini, E., Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: a freeze-fracture study, Neuroscience, 1982, vol. 7, no. 2, pp. 523–538. https://doi.org/10.1016/0306-4522(82)90285-8

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Ge, W.P., Zhou, W., Luo, Q., et al., Dividing glial cells maintain differentiated properties including complex morphology and functional synapses, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 1, pp. 328–333. https://doi.org/10.1073/pnas.0811353106

    Article  PubMed  Google Scholar 

  32. 32

    Pamies, D., Barreras, P., Block, K., et al., A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity, ALTEX, 2017, vol. 34, no. 3, pp. 362–376. https://doi.org/10.14573/altex.1609122

    Article  PubMed  Google Scholar 

  33. 33

    Ke, Q., Li, L., Yao, X., et al., Enhanced generation of human induced pluripotent stem cells by ectopic expression of Connexin 45, Sci. Rep., 2017, vol. 7, no. 1, p. 458. https://doi.org/10.1038/s41598-017-00523-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Todd, K.L., Kristan, W.B., and French, K.A., Gap junction expression is required for normal chemical synapse formation, J. Neurosci., 2010, vol. 30, no. 45, pp. 15277–15285. https://doi.org/10.1523/JNEUROSCI.2331-10.2010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Kelava, I. and Lancaster, M.A., Dishing out mini-brains: current progress and future prospects in brain organoid research, Dev. Biol., 2016, vol. 420, no. 2, pp. 199–209. https://doi.org/10.1016/j.ydbio.2016.06.037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


Russian Science Foundation Grant no. 19-15-00320.

Author information



Corresponding author

Correspondence to L. G. Khaspekov.

Ethics declarations

The authors declare that there are no clear or potential conflicts of interest associated with the publication of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kutukova, K.A., Frumkina, L.E., Ivanov, M.V. et al. Ultrastructural Organization of Ventral Mesencephalic Neurons Derived from Human Induced Pluripotent Stem Cells. Hum Physiol 46, 886–894 (2020). https://doi.org/10.1134/S0362119720080071

Download citation


  • ventral mesencephalic neurons
  • induced pluripotent stem cells
  • differentiation
  • ultrastructure