Skip to main content
Log in

Radiation Factor in Lunar Missions

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Ionizing space radiation safety for the crew is one of the goals of biomedical support of lunar missions. The results of dose estimations at the International Space Station and experimental data analysis, as well as the modeling of anticipated doses beyond Earth’s magnetosphere, advocate for the acceptability of ~1.5-month missions provided that the existing dose limits are not exceeded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Shafirkin, A.V. and Grigor’ev, Yu.G., Mezhplanetarnye i orbital’nye polity. Radiatsionnyi risk dlya kosmonavtov (Radiobiologicheskoe obosnovanie) (Radiation Risk for Cosmonauts in Interplanetary and Orbital Flights: Radiobiological Analysis), Moscow, 2009.

  2. Grigor’ev, A.I., Krasavin, E.A., and Ostrovskii, M.A., Assessment of the risk of the biological actions of galactic heavy ions to interplanetary flight, Neurosci. Behav. Phys., 2015, vol. 45, no. 1, pp. 91–95.

    Article  Google Scholar 

  3. Cucinotta, F., Alp, M., Sulzman, F., and Wang, M., Space radiation risks to the central nervous system, Life Sci. Space Res., 2014, vol. 2, pp. 54–69.

    Article  Google Scholar 

  4. Parihar, V.K., Allen, B., Tran, K.K., et al., What happens to your brain on the way to Mars, Sci. Adv., 2015, vol. 1, no. 4, p. e1400256.

    Article  Google Scholar 

  5. Doses of radiation during the flight to the Moon. http://ligaspace.my1.ru/news/2010-02-06-217.

  6. ICRP, Assessment of radiation exposure of astronauts in space: ICRP publication 123, Ann. ICR, 2013, vol. 42, no. 4.

  7. MU 2.6.1.44-03-2004. Metodicheskie ukazaniya. Ogranichenie oblucheniya kosmonavtov pri kosmicheskikh poletakh (OOKOKP-2004) (MU 2.6.1.44-03-2004. Guide on Irradiation Norms for Cosmonauts during Near-Earth Space Flights (NINESF-2004)), Moscow, 2004.

  8. McKenna-Lawlor, S., Feasibility study of astronaut standardized career dose limits in LEO and the outlook for BLEO, Acta Astronaut., 2014, vol. 104, pp. 565–573.

    Article  Google Scholar 

  9. SP 2.6.1.758-99. Normy radiatsionnoi bezopasnosti (NRB-99/2009) (SP 2.6.1.758-99. Radiation Safety Standards (RSS-99/2009)), Moscow, 2009.

  10. Shafirkin, A.V., Bengin, V.V., Bondarenko, V.A., et al., Dose loads and total radiation risk for cosmonauts in long-term missions to the Mir orbital station and the International space station, Aviakosm. Ekol. Med., 2018, vol. 52, no. 1, pp. 12–23.

    Google Scholar 

  11. Stradi, A., Szabo, J., Inozemtsev, K.O., et al., Comparative radiation measurements in the Russian segment of the International Space Station by applying passive dosimeters, Radiat. Meas., 2017, vol. 106, pp. 267–272.

    Article  CAS  Google Scholar 

  12. Sawyer, D.M. and Vette, J.I., AP-8 Trapped Proton Environment for Solar Maximum and Solar Minimum: Technical Memorandum NSSDC/WDC-A-R&S 76-06, Greenbelt, MD: Goddard Space Flight Center, 1976.

  13. Vette, J.I., The AE-8 Trapped Electron Model Environment: Technical Memorandum NSSDC/WDC-A-R&S 91-24, Greenbelt, MD: Goddard Space Flight Center, 1991.

  14. Kuznetsov, N.V. and Panasiuk, M.I., Space radiation and prediction of failure and fault tolerance of integrated circuits in the spacecraft onboard equipment, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Vozdeistv. Radioelektron. Appar., 2001, nos. 1–2, pp. 3–8.

  15. Dachev, T.P., Tomov, B.T., Matviichuk, Yu.N., et al., An overview of RADOM results for earth and moon radiation environment on “Chandrayaan-1” satellite, Adv. Space Res., 2011, vol. 48, no. 5, pp. 779–791.

    Article  CAS  Google Scholar 

  16. Badhwar, G.D., Atwell, W., Cash, B., et al., Radiation environment on the “Mir” orbital station during solar minimum, Adv. Space Res., 1998, vol. 22, no. 4, pp. 501–510.

    Article  CAS  Google Scholar 

  17. Mitrofanov, I., Malakhov, A., Bakhtin, B., et al., Fine resolution epithermal neutron detector (FREND) onboard the ExoMars trace gas orbiter, Space Sci. Rev., 2018, vol. 214, no. 5, p. e214:86.

  18. ISO 15390:2004: Space Environment (Natural and Artificial)—Galactic Cosmic Ray Model, Geneva: Int. Stand. Org., 2004.

  19. Badhwar, G. and O’Neill, P., Galactic cosmic radiation model and its applications, Adv. Space Res., 1996, vol. 17, no. 2, pp. 7–17.

    Article  CAS  Google Scholar 

  20. O’Neill, P. and Badhwar, G., 2010 galactic cosmic ray flux model; revised, IEEE Trans. Nucl. Sci., 2010, vol. 57, pp. 3148–3153.

    Google Scholar 

  21. Matthia, D., Berger, T., Mrigakshi, A.I., and Reitz, G., A ready-to-use galactic cosmic ray model, Adv. Space Res., 2013, vol. 51, no. 3, pp. 329–338.

    Article  Google Scholar 

  22. Kuznetsov, N.V., Popova, H., and Panasyuk, M.I., Empirical model of long-time variations of galactic cosmic ray particle fluxes, J. Geophys. Res.: Space Phys., 2017, vol. 122, pp. 1463–1472. https://doi.org/10.1002/2016JA022920

    Article  Google Scholar 

  23. Obridko, V. and Shelting, B., Anomalies in the evolution of global and large-scale solar magnetic fields as the precursors of several upcoming low solar cycles, Astron. J. Lett., 2009, vol. 35, no. 4, pp. 247–252. https://doi.org/10.1134/S1063773709040045

    Article  CAS  Google Scholar 

  24. Feynman, J., Spitale, G., Wang, J., and Gabriel, S., Interplanetary fluence model: JPL 1991, J. Geophys. Res.: Space Phys., 1993, vol. 98, pp. 13281–13294.

    Article  Google Scholar 

  25. GOST (State Standard) R 25645.165-2001. Solar Energetic Particles, Probabilistic Model for Proton Fluxes, Moscow: Standartinform, 2001.

  26. Kim Myung-Hee, Y., Hayat, M.J., Feiveson, A.H., and Cucinotta, F.A., Prediction of frequency and expose level of solar particle events, Health Phys., 2009, vol. 97, no. 1, pp. 68–81.

    Article  CAS  Google Scholar 

  27. Xapsos, M.A., Stauffer, C., Jordan, T., et al., Model for cumulative solar heavy ion energy and linear energy transfer spectra, IEEE Trans. Nucl. Sci., 2007, vol. 54, no. 6.

  28. Nymmik, R.A., Probabilistic model for fluences and peak fluxes of solar energetic particles, Radiat. Meas., 1999, vol. 30, no. 3, pp. 287–296.

    Article  CAS  Google Scholar 

  29. ISO/TR 18147:2014: Space Environment (Natural and Artificial)—Method of the Solar Energetic Protons Fluences and Peak Fluxes Determination, Geneva: Int. Stand. Org., 2014.

  30. Nymmik, R.A., Averaged energy spectra of peak flux and fluence values in solar cosmic ray events, Proc. 23rd Int. Cosmic Ray Conf., Calgary, 1993, vol. 3, pp. 29–32.

  31. Benghin, V.V., Makhmutov, V.S., Panova, N.A., et al., “Mir” radiation dosimetry results during the solar proton events in September–October 1989, Adv. Space Res., 1992, vol. 12, nos. 2–3, pp. 321–324.

    Google Scholar 

  32. Lobakov, A.P., Lyagushin, V.I., Panasyuk, M.I., et al., Increase of solar cosmic rays on the “Mir” space station in orbit during September–October 1989, Nucl. Tracks Radiat. Meas., 1992, vol. 20, no. 1, pp. 59–64.

    Article  CAS  Google Scholar 

  33. Zil’, M.V., Kolomenskii, A.V., and Petrov, V.M., The attenuation of the dose of solar cosmic rays by the geomagnetic field, Kosm. Issled., 1986, vol. 24, no. 6, pp. 944–947.

    Google Scholar 

  34. Denisov, A.N., Kuznetsov, N.V., Nymmik, R.A., et al., Assessment of the radiation environment on the Moon, Acta Astronaut., 2011, vol. 68, pp. 1440–1447.

    Article  CAS  Google Scholar 

  35. GOST (State Standard) 25645.150-90. Galactic Cosmic Rays, Model of Particle Flux Variation, Moscow: Izd. Standartov, 1991.

  36. Kuznetsov, N.V., Nymmik, R.A., and Panasiuk, M.I., Radiation risk assessment for cosmonauts on the Moon, Kosm. Issled., 2012, vol. 50, no. 3, pp. 224–228.

    Google Scholar 

  37. Cucinotta, F.A., Hu, S., Schwadron, N.A., et al., Space radiation risk limits and Earth–Moon–Mars environmental models, Space Weather, 2010, vol. 8, p. S00E09. https://doi.org/10.1029/2010SW000572

    Article  Google Scholar 

  38. De Angelis, G., Badavi, F.F., Clem, J.M., et al., Modeling of the lunar radiation environment, Nucl. Phys. B, Proc. Suppl., 2007, vol. 166, pp. 169–183.

    Article  CAS  Google Scholar 

  39. Reitz, G., Berger, T., and Matthiae, D., Radiation exposure in the Moon environment, Planet. Space Sci., 2012, vol. 74, pp. 78–83.

    Article  Google Scholar 

  40. Guol, J., Zeitlin, C., Wimmer-Schweingruber, R.F., et al., Modeling the variations of dose rate measured by RAD during the first MSL Martian year: 2012–2014, Astrophys. J., 2015, vol. 810, no. 1.

  41. Benton, E.R. and Benton, E.V. Space radiation dosimetry in low-Earth orbit and beyond, Nucl. Instrum. Methods Phys. Res., Sect. B, 2001, vol. 184, pp. 255–294.

    CAS  Google Scholar 

  42. Kolomenskii, A.V. and Petrov, V.M., Assessment of the radiation hazard from a solar flare on August 4, 1972, Kosm. Issled., 1978, vol. 16, no. 4, pp. 535–538.

    Google Scholar 

  43. Delp, M.D., Charvat, J.M., Limoli, C.L., et al., Apollo lunar astronauts show higher cardiovascular disease mortality: possible deep space radiation effects on the vascular endothelium, Sci. Rep., 2016, vol. 6, art. ID 29901. https://doi.org/10.1038/srep29901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Slaba, T.C., Bahadori, A.A., Reddell, B.D., et al., Optimal shielding thickness for galactic cosmic ray environments, Life Sci. Space Res., 2017, vol. 12, pp. 1–15.

    Article  Google Scholar 

  45. Sato, T., Niita, K., Shurshakov, V.A., et al., Evaluation of dose rate reduction in a spacecraft compartment due to additional water shield, Cosmic Res., 2011, vol. 49, no. 4, pp. 319–324.

    Article  CAS  Google Scholar 

  46. Kodaira, S., Tolochek, R.V., Ambrozova, I., et al., Verification of shielding effect by the water-filled materials for space radiation in the International Space Station using passive dosimeters, Adv. Space Res., 2014, vol. 53, no. 1, pp. 1–7.

    Article  CAS  Google Scholar 

  47. Petrov, V.M. and Shurshakov, V.A., Radiation-physical studies on the ISS in the period 2001–2008: the Matreshka-R experiment, in Mediko-biologicheskie issledovaniya na rossiiskom segmente MKS (Medical and Biological Studies on the Russian Segment of the ISS), Moscow: Nauchnaya Kniga, 2011, vol. 2, pp. 389–426.

  48. Petrov, V.M., Bengin, V.V., Shurshakov, V.A., et al., Absorbed doses in October–November 2003 onboard the Russian segment of the International Space Station according to the data of radiation control system, Cosmic Res., 2006, vol. 44, no. 2, pp. 106–110.

    Article  Google Scholar 

  49. Norbury, J.W., Schimmerling, W., Slaba, T.C., et al., Galactic cosmic ray simulation at the NASA Space Radiation Laboratory, Life Sci. Space Res., 2016, vol. 8, pp. 38–51.

    Article  Google Scholar 

  50. Timoshenko, G.N., Krylova, A.R., Paraipana, M., and Gordeev, I.S., Particle accelerator-based simulation of the radiation environment on board spacecraft for manned interplanetary missions, Radiat. Meas., 2017, vol. 107, pp. 27–32.

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed as part of the Program for Basic Research of the Russian Academy of Sciences, project no. 63.2.

COMPLIANCE WITH ETHICAL STANDARDSThe authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shurshakov.

Additional information

Translated by E.V. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, O.I., Panasiuk, M.I. & Shurshakov, V.A. Radiation Factor in Lunar Missions. Hum Physiol 46, 709–721 (2020). https://doi.org/10.1134/S0362119720070117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720070117

Keywords:

Navigation