Neurophysiological Mechanisms of Orientation Feature Matching in a Working Memory Task


This study aimed to elucidate the mechanism of detecting differences between a current line orientations and line orientations retained in working memory (WM). The results were compared with the data obtained in a WM experiment for spatial patterns. The study involved 33 healthy subjects with normal vision. The subjects performed a WM task, and the visual event-related potentials (ERPs) and dipole simulation were analyzed in the interval 160–280 ms after the stimulus. An increase in ERP amplitude was identified as an informative marker of a mismatch between the current and retained stimuli. The increase arose simultaneously in the frontal and parietal-occipital cortical areas and was stimulus type independent. An analysis of distributed dipole sources showed that the topography of match vs. mismatch differences depends on the stimulus type. In the case of orientations, differences were more local and predominated in the caudal areas of the left hemisphere. In the case of spatial patterns, differences were more extended and prevailed in the right hemisphere. The results indicate that a common organization is characteristic of neural networks detecting a mismatch between current and retained stimuli and, on the other hand, that some rearrangements can arise in these neural networks depending on the type of information processed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    Hollingworth, A., Richard, A.M., and Luck, S.J., Understanding the function of visual short-term memory in human cognition: transsaccadic memory, object correspondence, and gaze correction, J. Exp. Psychol.: Gen., 2008, vol. 137, p. 163.

    Article  Google Scholar 

  2. 2

    Magnussen, S., Low-level memory processes in vision, Trends Neurosci., 2000, vol. 23, no. 6, p. 247.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Christophel, T.B., King, P.C., Spitzer, B., et al., The disturbed nature of working memory, Trends Cognit. Sci., 2017, vol. 21, no. 2, p. 111.

    Article  Google Scholar 

  4. 4

    Harrison, S.A. and Tong, F., Decoding reveals the contents of visual working memory in early visual areas, Nature, 2009, vol. 458, no. 7238, p. 632.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Mikhailova, E.S., Gerasimenko, N.Yu., Slavutskaya, A.V., et al., Temporal and topographic characteristics of evoked potentials in the conflict of two consecutive visual stimuli in a working memory task, Hum. Physiol., 2017, vol. 43, no. 3, p. 248.

    Article  Google Scholar 

  6. 6

    Mikhailova, E.S., Gerasimenko, N.Yu., and Slavutskaya, A.V., Sensory mechanism of early discrimination of orientations in the visual working memory, Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova, 2019, vol. 69, no. 5, p. 577.

    Google Scholar 

  7. 7

    Potts, G.F. and Tucker, D.M., Frontal evaluation and posterior representation in target detection, Cognit. Brain Res., 2001, vol. 11, p. 147.

    CAS  Article  Google Scholar 

  8. 8

    Pinal, D., Zurrón, M., and Díaz, F., Effects of load and maintenance duration on the time course of information encoding and retrieval in working memory: from perceptual analysis to post-categorization processes, Front. Hum. Neurosci., 2014, vol. 8, art. ID 165.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc., Ser. B, 1995, vol. 57, no. 1, p. 289.

    Google Scholar 

  10. 10

    Krylova, M.A., Izyurov, I.V., Gerasimenko, N.Yu., et al., The modeling of human visual ERPs sources in the task of line orientation identification, Zh. Vyssh. Nerv. Deyat. Im. I.P. Pavlova, 2015, vol. 65, no. 6, p. 685.

    CAS  Google Scholar 

  11. 11

    Mazoyer, B. and Joliot, M., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain, NeuroImage, 2002, vol. 15, no. 1, p. 273.

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Brett, M., Anton, J.-L., Valabregue, R., and Poline, J.-B., Region of interest analysis using an SPM toolbox, NeuroImage, 2002, vol. 16, no. 2.

  13. 13

    Zhang, Y., Wang, Y., Wang, H., et al., Different processes are involved in human brain for shape and face comparisons, Neurosci. Lett., 2001, vol. 303, no. 3, p. 157.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Wang, H., Wang, Y., Kong, J., et al., Enhancement of conflict processing activity in human brain under task relevant condition, Neurosci. Lett., 2001, vol. 298, no. 3, p. 155.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Yin, J., Gao, Z., Jin, X., et al., Tracking the mismatch information in visual short term memory: An event-related potential study, Neurosci. Lett., 2011, vol. 491, no. 1, p. 26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Gao, Z., Li, J., Liang, J., et al., Storing fine detailed information in visual working memory—Evidence from event-related potentials, J. Vision, 2009, vol. 9, no. 7, p. 17.

    Article  Google Scholar 

  17. 17

    Crowley, K.E. and Colrain, I.M., A review of the evidence for P2 being an independent component process: age, sleep and modality, Clin. Neurophysiol., 2004, vol. 115, no. 4, p. 732.

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Chernyshev, B.V. and Medvedev, V., Event-Related Potential Study of P2 and N2 Components on Fast and Slow Responses in the Auditory Condensation Task: Higher School of Economics Research Paper No. WP BRP 70/PSY/2016, Moscow, 2016.

  19. 19

    Freunberger, R., Klimesch, W., Doppelmayr, D., and Holler, Y., Visual P2 component is related to theta phase-locking, Neurosci. Lett., 2007, vol. 426, no. 3, p. 181.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Tremblay, K.L., Ross, B., Inoue, K., et al., Is the auditory evoked P2 response a biomarker of learning? Front. Syst. Neurosci., 2014, vol. 8, p. 28.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Lefebvre, C.D., Marchanda, Y., Eskes, G.A., and Connoll, J.F., Assessment of working memory abilities using an event-related brain potential (ERP)-compatible digit span backward task, Clin. Neurophysiol., 2005, vol. 116, no. 7, p. 1665.

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Wang, A.L., Mouraux, A., Liang, M., and Iannetti, G.D., The enhancement of the N1 wave elicited by sensory stimuli presented at very short inter-stimulus intervals is a general feature across sensory systems, PLoS One, 2008, vol. 3, no. 12, p. e3929.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23

    Novak, G., Ritter, W., and Vaughan, H.G., Jr., Mismatch detection and the latency of temporal judgements, Psychophysiology, 1992, vol. 29, no. 4, p. 398.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Coenen, A., Modeling of auditory evoked potentials of human sleep–wake states, Int. J. Psychophysiol., 2012, vol. 85, no. 1, p. 37.

    PubMed  Article  PubMed Central  Google Scholar 

  25. 25

    Haenschel, C., Vernon, D.J., Dwivedi, P., et al., Event related brain potential correlates of human auditory sensory memory-trace formation, J. Neurosci., 2005, vol. 25, no. 45, p. 10494.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Hubel, D.H. and Wiesel, T.N., Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol., 1962, vol. 160, no. 1, p. 106.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Landau, S., Garavan, M.H., Schumacher, E.H., and D’Esposito, M., Regional specificity and practice: dynamic changes in object and spatial working memory, Brain Res., 2007, vol. 1180, p. 78.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Miller, B.T. and D’Esposito, M., Spatial and temporal dynamics of cortical networks engaged in memory encoding and retrieval, Front. Hum. Neurosci., 2012, vol. 6, p. 109.

    PubMed  PubMed Central  Google Scholar 

  29. 29

    Courtney, S.M., Petit, L., Maisog, J.M., et al., An area specialized for spatial working memory in human frontal cortex, Science, 1998, vol. 279, no. 5355, p. 1347.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    Curtis, C.E. and D’Esposito, M., Persistent activity in the prefrontal cortex during working memory, Trends Cognit. Sci., 2003, vol. 7, p. 415.

    Article  Google Scholar 

  31. 31

    Xu, X., Collins, C.E., Khaytin, I., et al., Unequal representation of cardinal vs. oblique orientations in the middle temporal visual area, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, p. 17490.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Ester, E.F., Sprague, T.C., and Serences, J.T., Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory, Neuron, 2015, vol. 87, no. 4, p. 893.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Barredo, J., Öztekin, I., and Badre, D., Ventral fronto-temporal pathway supporting cognitive control of episodic memory retrieval, Cereb. Cortex, 2015, vol. 25, no. 4, p. 1004.

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Barredo, J., Verstynen, T.D., and Badre, D., Organization of cortico-cortical pathways supporting memory retrieval across subregions of the left ventrolateral prefrontal cortex, J. Neurophysiol., 2016, vol. 116, no. 3, p. 920.

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Wagner, A., Paré-Blagoev, E., Clark, J., and Poldrack, R., Recovering meaning: left prefrontal cortex guides controlled semantic retrieval, Neuron, 2001, vol. 31, no. 2, p. 329.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Badre, D., Poldrack, R.A., Paré-Blagoev, E.J., et al., Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex, Neuron, 2005, vol. 47, no. 6, p. 907.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Fink, G.R., Halligan, P.W., Marshall, J.C., et al., Neural mechanisms involved in the processing of global and local aspects of hierarchically organized visual stimuli, Brain, 1997, vol. 120, p. 1779.

    PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Wakita, M., Categorical perception of orientation in monkeys, Behav. Process., 2004, vol. 67, no. 2, p. 263.

    Article  Google Scholar 

  39. 39

    Smith, E.E. and Jonides, J., Working memory: a view from neuroimaging, Cognit. Psychol., 1997, vol. 33, no. 1, p. 5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Slotnick, S.D. and Moo, L.R., Prefrontal cortex hemispheric specialization for categorical and coordinate visual spatial memory, Neuropsychologia, 2006, vol. 44, p. 1560.

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Herzmann, G., Jin, M., Cordes, D., and Curran, T., A within-subject ERP and fMRI investigation of orientation-specific recognition memory for pictures, Cognit. Neurosci., 2012, vol. 3, nos. 3–4, p. 174.

    Article  Google Scholar 

  42. 42

    Barton, B. and Brewer, A.A., Visual working memory in human cortex, Psychology, 2013, vol. 4, no. 8, p. 655.

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    D’Esposito, M., Aguirre, G.K., Zarahn, E., et al., Functional MRI studies of spatial and nonspatial working memory, Cognit. Brain Res., 1998, vol. 7, no. 1, p. 1.

    Article  Google Scholar 

  44. 44

    Levelt, W.J., Praamstra, P., Meyer, A.S., et al., An MEG study of picture naming, J. Cognit. Neurosci., 1998, vol. 10, no. 5, p. 553.

    CAS  Article  Google Scholar 

  45. 45

    Corbetta, M., Kincade, J.M., Ollinger, J.M., et al., Voluntary orienting is dissociated from target detection in human posterior parietal cortex, Nat. Neurosci., 2000, vol. 3, p. 292.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Omoto, S., Kuroiwa, Y., Otsuka, S., et al., P1 and P2 components of human visual evoked potentials are modulated by depth perception of 3-dimensional images, Clin. Neurophysiol., 2010, vol. 121, no. 3, p. 386.

    PubMed  Article  PubMed Central  Google Scholar 

Download references


This work was supported by the Russian Foundation for Basic Research (project no. 19-013-00918\19).

Author information



Corresponding author

Correspondence to E. S. Mikhailova.

Ethics declarations

Conflict of interests. The authors declare that they have no real or potential conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments and were approved by the local Ethics Committee at the Institute of Higher Nervous Activity and Neurophysiology (Russian Academy of Sciences, Moscow). All individual participants involved in the study voluntarily gave their written informed consent for participation after being informed about the potential risks and benefits and nature of the study.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mikhailova, E.S., Gerasimenko, N.Y. & Saltykov, K.A. Neurophysiological Mechanisms of Orientation Feature Matching in a Working Memory Task. Hum Physiol 46, 607–620 (2020).

Download citation


  • human
  • vision
  • working memory
  • line orientation
  • event-related potentials
  • dipole sources