Accretion of Some Classes of Holographic DE onto Higher-Dimensional Schwarzschild Black Holes

Abstract

We study the accretion of dark matter and DE onto \((n+2)\)-dimensional Schwarzschild black holes. Since, due to the accretion process, the mass of the black hole is dynamical, so the mass and its changing rate for \((n+2)\)-dimensional Schwarzschild black holes have been found. We assume a general form of holographic DE where the dimensionless model parameter \(c\) is assumed to be variable, i.e., \(c\) is a function of redshift \(z\). We also assume seven types of parametrizations of \(c(z)\), and they are: model I (linear type), model II (CPL type), model III (JBP type), model IV (Wetterich type), model V (Efstathiou type), model VI (Ma-Jhang type), and model VII (ASSS type). The black hole mass is calculated in terms of redshift when dark matter and a general form of holographic DE accrete onto the black hole. We show that the black hole mass increases for all types of holographic dark energy candidates. The mass increasing rate sensitively depends on the space-time dimension.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. 1

    G. ’t Hooft, arXiv:gr-qc/9310026.

  2. 2

    L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1994).

    ADS  Article  Google Scholar 

  3. 3

    S. D. H. Hsu, Phys. Lett. B 594, 13 (2004).

    ADS  Article  Google Scholar 

  4. 4

    M. Li, Phys. Lett. B 603, 1 (2004).

    ADS  Article  Google Scholar 

  5. 5

    H. Saadat, Int. J. Theor. Phys. 50, 1769 (2011).

    Article  Google Scholar 

  6. 6

    H. Saadat, N. Mousavi, and A. M. Saadat, Int. J. Theor. Phys. 50, 2878 (2011).

    Article  Google Scholar 

  7. 7

    Y. Bisabr, Gravit. Cosmol. 18, 151 (2012).

    ADS  Article  Google Scholar 

  8. 8

    H. Saadat, Int. J. Theor. Phys. 51, 731 (2012).

    Article  Google Scholar 

  9. 9

    H. Saadat, Int. J. Theor. Phys. 51, 1932 (2012).

    Article  Google Scholar 

  10. 10

    J. Sadeghi, B. Pourhassan, and Z. A. Moghaddam, Int. J. Theor. Phys. 53, 125 (2014).

    Article  Google Scholar 

  11. 11

    B. Guberina, R. Horvat, and H. Nikoli, JCAP 01, 012 (2007).

  12. 12

    L. Xu, JCAP 09, 016 (2009).

  13. 13

    H. Wei, Nucl. Phys. B 819, 210 (2009).

    ADS  Article  Google Scholar 

  14. 14

    N. Radicella and D. Pavon, JCAP 10, 005 (2010).

  15. 15

    H. Saadat, Int. J. Theor. Phys. 52, 1027 (2013).

    MathSciNet  Article  Google Scholar 

  16. 16

    B. Borah and M. Ansari, Int. J. Theor. Phys. 53, 1217 (2014).

    Article  Google Scholar 

  17. 17

    B. Borah and M. Ansari, Ind. J. Phys. 89, 101 (2015).

    Article  Google Scholar 

  18. 18

    D. Pavon and W. Zimdahl, Phys. Lett. B 628, 206 (2005).

    ADS  Article  Google Scholar 

  19. 19

    Z. Zhang, M. Li, X. D. Li, S. Wang, and W. S. Zhang, Mod. Phys. Lett. A 27, 1250115 (2012).

    ADS  MATH  Article  Google Scholar 

  20. 20

    H. Bondi, Mon. Not. Roy. Astron. Soc. 112, 195 (1952).

    ADS  Article  Google Scholar 

  21. 21

    F. C. Michel, Astrophys. Space Sci. 15, 153 (1972).

    ADS  Article  Google Scholar 

  22. 22

    E. Babichev et al., Phys. Rev. Lett. 93, 021102 (2004).

  23. 23

    E. Babichev, V. Dokuchaev, and Y. Eroshenko, J. Exp. Theor. Phys. 100, 525 (2005).

    ADS  Article  Google Scholar 

  24. 24

    Jośe A. Jiménez Madrid and Pedro F. González-Díaz, Grav. Cosmol. 14, 213 (2008).

    ADS  Article  Google Scholar 

  25. 25

    M. Jamil, Eur. Phys. J. C 62, 609 (2009).

    ADS  Article  Google Scholar 

  26. 26

    J. Bhadra and U. Debnath, Eur. Phys. J. C. 72, 1912 (2012).

    ADS  Article  Google Scholar 

  27. 27

    J. A. S. Lima, D. C. Guariento, and J. E. Horvath, Phys. Lett. B 693, 218 (2010).

    ADS  Article  Google Scholar 

  28. 28

    S. W. Kim and Y. Kang, Int. J. Mod. Phys. Conf. Ser. 12, 320 (2012).

    Article  Google Scholar 

  29. 29

    C. Y. Sun, Phys. Rev. D 78, 064060 (2008).

  30. 30

    R. Emparan and H. S. Reall, Living Rev. Rel. 11, 6 (2008).

    Article  Google Scholar 

  31. 31

    H. S. Reall, Int. J. Mod. Phys. D 21, 1230001 (2012).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. 32

    S. H. Hendi, Eur. Phys. J. C 71, 1551 (2011).

    ADS  Article  Google Scholar 

  33. 33

    S. G. Ghosh, Int. J. Theor. Phys. 21, 1250022 (2012).

  34. 34

    U. Debnath, Astrophys. Space Sci. 360, 40 (2015).

    ADS  Article  Google Scholar 

  35. 35

    A. J. John, S. G. Ghosh, and S. D. Maharaj, Phys. Rev. D 88, 104005 (2013).

  36. 36

    U. Debnath, Eur. Phys. J. C 75, 449 (2015).

    ADS  Article  Google Scholar 

  37. 37

    P. Kanti and E. Winstanley, arXiv: 1402.3952.

  38. 38

    M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).

    ADS  Article  Google Scholar 

  39. 39

    S. Chattopadhyay, U. Debnath, and G. Chattopadhyay, Astrophys. Space Sci. 314, 41 (2008).

    ADS  Article  Google Scholar 

  40. 40

    U. Debnath and M. Jamil, Astrophys. Space Sci. 335, 545 (2011).

    ADS  Article  Google Scholar 

  41. 41

    A. R. Cooray and D. Huterer, Astrophys. J. 513, L95 (1999).

    ADS  Article  Google Scholar 

  42. 42

    N. Aghanim et al. (Planck Collaboration), arXiv: 1807.06209.

  43. 43

    M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10, 213 (2001).

    ADS  Article  Google Scholar 

  44. 44

    E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003).

  45. 45

    H. K. Jassal, J. S. Bagla, and T. Padmanabhan, Mon. Not. R. Astron. Soc. 356, L11 (2005).

    ADS  Article  Google Scholar 

  46. 46

    C. Wetterich, Phys. Lett. B 594, 17 (2004).

    ADS  Article  Google Scholar 

  47. 47

    Y. G. Gong, Class. Quantum Grav. 22, 2121 (2005).

    ADS  Article  Google Scholar 

  48. 48

    G. Efstathiou, Mon. Not. R. Astron. Soc. 310, 842 (1999).

    ADS  Article  Google Scholar 

  49. 49

    R. Silva, J. S. Alcaniz, and J. A. S. Lima, Int. J. Mod. Phys. D 16, 469 (2007).

    ADS  Article  Google Scholar 

  50. 50

    J. Z. Ma and X. Zhang, Phys. Lett. B 699, 233 (2011).

    ADS  Article  Google Scholar 

  51. 51

    H. Li and X. Zhang, Phys. Lett. B 703, 2 (2011).

    Google Scholar 

  52. 52

    U. Alam, V. Sahni, T. D. Saini and A. A. Starobinski, Mon. Not. R. Astron. Soc. 354, 275 (2004).

    ADS  Article  Google Scholar 

  53. 53

    U. Alam, V. Sahni, and A. A. Starobinski, JCAP 0406, 008 (2004).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ujjal Debnath.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Debnath, U. Accretion of Some Classes of Holographic DE onto Higher-Dimensional Schwarzschild Black Holes. Gravit. Cosmol. 26, 75–81 (2020). https://doi.org/10.1134/S0202289320010041

Download citation