Skip to main content
Log in

Particle Acceleration in Rotating Modified Hayward and Bardeen Black Holes

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We consider a rotating modified Hayward black hole and construct a rotating modified Bardeen black hole to study particle acceleration of two colliding particles near the horizon. These classes of black holes have new and important parameters with mass dimension, which made crucial differences with the Kerr black hole. We investigate the CM energy of two colliding neutral particles with the same rest masses falling from rest at infinit to near the horizons of the mentioned black holes. We confirm that rotational motion of these black holes is necessary to have infinite CM energy for collision of two particles near the horizon. We also investigate the range of the particles’ angular momentum and the orbit of the particle, hence find an infinite region for the case of rotating modified Bardeen black hole and a finite region for the case of a modified Hayward black hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Banados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009).

    Article  ADS  Google Scholar 

  2. K. Lake, Phys. Rev. Lett. 104, 211102 (2010).

    Article  ADS  Google Scholar 

  3. K. Lake, Phys. Rev. Lett. 104, 259903 (2010).

    Article  ADS  Google Scholar 

  4. T. Harada and M. Kimura, Class. Quantum Grav. 31, 243001_ (2014).

    Article  ADS  Google Scholar 

  5. S. W. Wei, Y. X. Liu, H. Guo, and C.-E. Fu, Phys. Rev. D 82, 103005 (2010).

    Article  ADS  Google Scholar 

  6. C. Liu, S. Chen, C. Ding, and J. Jing, Phys. Lett. B 701, 285 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Zakria and M. Jamil, JHEP 1505, 147 (2015).

    Article  ADS  Google Scholar 

  8. E. Berti, V. Cardoso, L. Gualtieri, F. Pretorius, and U. Sperhake, Phys. Rev. Lett. 103, 239001 (2009).

    Article  ADS  Google Scholar 

  9. T. Jacobson and T. P. Sotiriou, Phys. Rev. Lett. 104, 021101 (2010).

    Article  ADS  Google Scholar 

  10. O. B. Zaslavskii, JETP Lett. 92, 571 (2010).

    Article  ADS  Google Scholar 

  11. T. Igata, T. Harada, and M. Kimura, Phys. Rev. D 85, 104028 (2012).

    Article  ADS  Google Scholar 

  12. M. Banados, B. Hassanain, J. Silk, and S. M. West, Phys. Rev. D 83, 023004 (2011).

    Article  ADS  Google Scholar 

  13. I. Hussain, Mod. Phys. Lett. A 27, 1250017 (2012).

    Article  ADS  Google Scholar 

  14. A. A. Grib and Yu. V. Pavlov, Astropart. Phys. 34, 581 (2011).

    Article  ADS  Google Scholar 

  15. A. A. Grib and Yu. V. Pavlov, Grav. Cosmol. 17, 42 (2011).

    Article  ADS  Google Scholar 

  16. T. Harada and M. Kimura, Phys. Rev. D 83, 024002 (2011).

    Article  ADS  Google Scholar 

  17. M. Sharif and N. Haider, Astrophys. Space Sci. 346, 111 (2013).

    Article  ADS  Google Scholar 

  18. S. W. Wei, Y. X. Liu, H. T. Li, and F. W. Chen, JHEP 12, 066 (2010).

    Article  ADS  Google Scholar 

  19. S. G. Ghosh, P. Sheoran, and M. Amir, Phys. Rev. D 90, 103006 (2014).

    Article  ADS  Google Scholar 

  20. J. Sadeghi and B. Pourhassan, Eur. Phys. J. C. 72, 1984 (2012).

    Article  ADS  Google Scholar 

  21. J. Sadeghi, B. Pourhassan, and H. Farahani, Commun. Theor. Phys. 62, 358 (2014).

    Article  ADS  Google Scholar 

  22. S. G. Ghosh, Eur. Phys. J. C 75, 532 (2015).

    Article  ADS  Google Scholar 

  23. M. Patil and P. S. Joshi, Phys. Rev. D 82, 104049 (2010).

    Article  ADS  Google Scholar 

  24. M. Patil, P. S. Joshi, and D. Malafarina, Phys. Rev. D 83, 064007 (2011).

    Article  ADS  Google Scholar 

  25. M. Patil and P. S. Joshi, Class. Quantum Grav. 28, 235012 (2011).

    Article  ADS  Google Scholar 

  26. M. Patil, P. S. Joshi, M. Kimura, and K. I. Nakao, Phys. Rev. D 86, 084023 (2012).

    Article  ADS  Google Scholar 

  27. J. Bardeen, in: Proceedings of GR5 (Tbilisi, 1968).

    Google Scholar 

  28. S. A. Hayward, Phys. Rev. Lett. 96, 031103 (2006).

    Article  ADS  Google Scholar 

  29. E. Ayon-Beato and A. Garcia, Phys. Rev. Lett. 80, 5056 (1998).

    Article  ADS  Google Scholar 

  30. Kirill A. Bronnikov, Phys. Rev. D 63, 044005 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  31. G. Abbas and U. Sabiullah, Astrophys. Space Sci. 352, 769 (2014).

    Article  ADS  Google Scholar 

  32. C. Bambi and L. Modesto, Phys. Lett. B 721, 329 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  33. T. De Lorenzo, C. Pacilioy, C. Rovelli, and S. Speziale, Gen. Rel. Grav. 47, 41 (2015).

    Article  ADS  Google Scholar 

  34. M. Amir and S. G. Ghosh, JHEP 1507, 015 (2015).

    Article  ADS  Google Scholar 

  35. P. Pradhan, arXiv:1402.2748 [gr-qc].

  36. N. Haider, Open J.Mod. Phys. 1, 1 (2014).

    Article  Google Scholar 

  37. U. Debnath, EPJC 75, 129 (2015).

    Article  ADS  Google Scholar 

  38. O. B. Zaslavskii, Phys. Rev. D 82, 083004 (2010).

    Article  ADS  Google Scholar 

  39. C. A. R. Herdeiro, Class. Quantum Grav. 20, 4891 (2003).

    Article  ADS  Google Scholar 

  40. A. Pourdarvish et al., Int. J. Theor. Phys. 52, 3560 (2013).

    Article  MathSciNet  Google Scholar 

  41. A. Pourdarvish et al., Int. J. Theor. Phy. 53, 3101 (2014).

    Article  MathSciNet  Google Scholar 

  42. Robert C. Myers, Phys. Rev. D 50, 6412 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  43. J. Sadeghi et al., Eur. Phys. J. C 53, 95 (2008).

    Article  ADS  Google Scholar 

  44. J. Sadeghi, M. R Setare, and B. Pourhassan, Acta Phys. Pol. B 40, 251 (2009).

    ADS  Google Scholar 

  45. J. Sadeghi, B. Pourhassan, and F. Pourasadollah, Phys. Lett. B 720, 244 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  46. J. Sadeghi, B. Pourhassan, and A. Asadi, Eur. Phys. J. C 74, 2680 (2014).

    Article  ADS  Google Scholar 

  47. S. Kachru, X. Liu, and M. Mulligan, Phys. Rev.D 78, 106005 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  48. J. Sadeghi, B. Pourhassan, and A. Asadi, Can. J. Phys. 92, 280 (2014).

    Article  ADS  Google Scholar 

  49. M. Cadoni and S. Mignemi, JHEP 1206, 056 (2012).

    Article  ADS  Google Scholar 

  50. Robert C. Myers, “Myers-Perry black holes,” arXiv: 1111.1903.

  51. A. Pourdarvish and B. Pourhassan, Int. J. Theor. Phys. 53, 136 (2014).

    Article  Google Scholar 

Download references

Acknowledgment

One of the authors (UD) is thankful to IUCAA, Pune, India for warm hospitality where part of the work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Pourhassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourhassan, B., Debnath, U. Particle Acceleration in Rotating Modified Hayward and Bardeen Black Holes. Gravit. Cosmol. 25, 196–204 (2019). https://doi.org/10.1134/S0202289319020129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289319020129

Navigation