Skip to main content
Log in

The Role of Initial Conditions and Parameters of the Model in Evolution of the Universe. Case Study: Brans-Dicke Theory in Einstein Frame

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The dynamics of the Brans-Dicke (BD) cosmology in the Einstein frame is studied. We implement phase-space analysis in order to investigate the role of initial conditions and model parameters in the evolution of the universe. The phase plane algorithm and stability of the model are considered in the Einstein Frame where the cosmological background is described in Λ-Cold Dark Matter (ΛCDM) and is supplemented by a Jordan-Fierz-Brans-Dicke field. Our results show: (1) The model parameter α (the coupling strength of the BD scalar field to matter sources) in the Einstein frame plays an important role in the model stability whereas the initial conditions significantly affect the cosmic dynamics. (2) Using type Ia SNIa data, we fit the parameters of the model with observation and show that the current value of the effective equation of state (EoS) parameter is within the range supported by observations. (3) The phase space analysis implies that the universe approaches an attractor in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Dunkley et al., “Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Bayesian estimation of CMB polarizaztion maps,” Astrophys. J. 701, 1804 (2009).

    Article  ADS  Google Scholar 

  2. E. Komatsu et al., “CMB anisotropies at second order III: Bispectrum from products of the first-order perturbations,” Astrophys. J. Suppl. 180, 330 (2009).

    Article  ADS  Google Scholar 

  3. S. Perlmutter et al., “Measurements of Omega and Lambda from 42 high-redshift supernovae,” Astrophys. J. 517, 565 (1999).

    Article  ADS  MATH  Google Scholar 

  4. A. G. Riess et al., “Observational evidence from Supernovae for an accelerating Universe and a cosmological constant,” Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  5. J. L. Tonry et al., “Cosmological results from high-z Supernovae,” Astrophys. J. 594, 1 (2003).

    Article  ADS  Google Scholar 

  6. A. G. Riess et al., “Type Ia Supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution,” Astrophys. J. 607, 665 (2004).

    Article  ADS  MATH  Google Scholar 

  7. D. J. Eisenstein et al., “Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies,” Astrophys. J. 633, 560 (2005).

    Article  ADS  Google Scholar 

  8. C. Blake et al., “A primer on hierarchical galaxy formation: the semi-analytical approach,” Mon. Not. Roy. Astron. Soc. 365, 255 (2006).

    Article  ADS  Google Scholar 

  9. T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, “Modified gravity and cosmology,” Phys. Rep. 513, 1 (2012); arXiv:1106. 2476.

    Article  ADS  MathSciNet  Google Scholar 

  10. K. Koyama, “Cosmological tests of modified gravity,” Rep. Prog. Phys. 79, 046902 (2016); arXiv: 1504. 04623.

    Article  ADS  Google Scholar 

  11. C. Brans and R. H. Dicke, “Mach’s principle and a relativistic theory of gravitation,” Phys. Rev. 124, 925 (1961).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. P. Jordan, Schwerkaft und Weltall. A New Strategy for Solving Two Cosmological Constant Problems in Hadron Physics. (Vieweg, Braunschweig, 1955).

    Google Scholar 

  13. A. A. Starobinsky and J. Yokoyama, “Density fluctuations in Brans-Dicke inflation,” gr-qc/9502002.

  14. S. Tsujikawa, “Modified gravity models of dark energy,” Lect. Notes Phys. 800, 99 (2010); arXiv: 1101. 0191.

    Article  ADS  MATH  Google Scholar 

  15. L. Qiang, Y. Ma, M. Han, and D. Yu, “Fivedimensional Brans-Dicke theory and cosmic acceleration,” Phys. Rev. D 71, 061501(R) (2005).

    Google Scholar 

  16. L. Qiang, Y. Gong, Y. Ma, and X. Chen, “Fixed points in interacting dark energymodels,” Phys. Lett. B 681, 210 (2009); arXiv: 0910. 1885.

    Article  ADS  MathSciNet  Google Scholar 

  17. E. Babichev and D. Langlois, “Relativistic stars in f(R) and scalar-tensor theories,” Phys. Rev. D 81, 124051 (2010); arXiv: 0911. 1297.

    Article  ADS  Google Scholar 

  18. C. H. Brans, “The roots of scalar-tensor theory: An approximate history,” gr-qc/0506063.

  19. A. Coc, K. A. Olive, J. P. Uzan, and E. Vangioni, “QCD effects in cosmology,” arXiv: 0811. 1845.

  20. G. Esposito-Farèse and D. Polarski, “Scalar-tensor gravity in an accelerating universe,” Phys. Rev. D 63, 063504 (2001).

    Article  ADS  Google Scholar 

  21. J. A. R. Cembranos and A. de la Cruz Dombriz, “A f(R) gravity without cosmological constant,” Phys. Rev. D 88, 123507 (2013).

    Article  ADS  Google Scholar 

  22. A. Hojjati, L. Pogosian, and G.-B. Zhao, “Testing gravity with CAMB and CosmoMC,” JCAP 1108, 005 (2011).

    Article  ADS  Google Scholar 

  23. K. N. Ananda, S. Carloni, and P. K. S. Dunsby, “A characteristic signature of fourth order gravity,” Class. Quantum Grav. 26, 235018 (2009); arXiv: 0812. 2028.

    Article  ADS  MATH  Google Scholar 

  24. A. de la Cruz-Dombriz, A. Dobado, and A. L. Maroto, Phys. Rev. Lett. 103, 179001 (2009).

    Article  ADS  Google Scholar 

  25. A. Abebe, A. de la Cruz-Dombriz, and P. K. S. Dunsby, “Large scale structure constraints for a class of f(R) theories of gravity,” arXiv: 1304. 3462.

  26. A. G. Riess et al., “A cosmic vector for dark energy,” Astrophys. J. 607, 665 (2004).

    Article  ADS  Google Scholar 

  27. S. Cole et al., “A primer on hierarchical galaxy formation: the semi-analytical approach,” Mon. Not. R. Astron. Soc. 362, 505 (2005).

    Article  ADS  Google Scholar 

  28. R. Yan et al., “Fitting the integrated spectral energy distributions of galaxies,” Mon. Not. R. Astron. Soc. 398, 735 (2009).

    Article  ADS  Google Scholar 

  29. R. Amanullah et al., “Spectra and light curves of six Type Ia Supernovae at 0. 511 < z < 1. 12 and the Union2 Compilation,” arXiv: 1004. 1711.

  30. Y.-F. Cai et al., “Direct probe of dark energy through gravitational dark energy,” Phys. Rept, in press, doi10. 1016/j. physrep. 2010. 04. 001 (2010).

    Google Scholar 

  31. T. Gonzalez, G. Leon, and I. Quiros, “Emergent Universe with exotic matter,” Class. Quantum Grav. 23, 165 (2006).

    Article  MathSciNet  Google Scholar 

  32. S. Nojiri, S. D. Odintsov, and S. Jhingan, Phys. Lett. B 562, 147 (2003).

    Article  ADS  Google Scholar 

  33. R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003).

    Article  ADS  Google Scholar 

  34. Y.-F. Cai and J. Wang, Class. Quantum Grav. 25, 165014 (2008).

    Article  ADS  Google Scholar 

  35. J. Q. Xia et al., Int. J. Mod. Phys. D17, 1229 (2009).

    Google Scholar 

  36. E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).

    Article  ADS  Google Scholar 

  37. P. A. R. Ade et al., “Planck 2015 results-xiii. Cosmological parameters,” Astron. Astroph. 594, A13 (2016).

    Article  Google Scholar 

  38. Alejandro Aviles et al., “Holographic dark matter and dark energy with second order invariant,” Phys. Rev. D 84, 103520 (2011).

    Article  ADS  Google Scholar 

  39. Orest Hrycyna and Marek Szydlowski, “Cosmological dynamics with nonminimally coupled scalar field and a constant potential function,” JCAP 12, 016 (2013).

    Google Scholar 

  40. G. Papagiannopoulos, John D. Barrow, S. Basilakos, A. Giacomini, and A. Paliathanasis, “Dynamical symmetries in Brans-Dicke cosmology,” Phys. Rev. D 95, 024021 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Salehi, H. Farajollahi, and S. Aryamanesh, Grav. Cosmol. 24, 292 (2018).

    Article  ADS  Google Scholar 

  42. G. Esposito-Farese and D. Polarski, “Scalar-tensor gravity in an accelerating universe,” Phys. Rev. D 63, 063504 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salehi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, A., Farajollahi, H. & Aryamanesh, S. The Role of Initial Conditions and Parameters of the Model in Evolution of the Universe. Case Study: Brans-Dicke Theory in Einstein Frame. Gravit. Cosmol. 25, 50–57 (2019). https://doi.org/10.1134/S0202289319010092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289319010092

Navigation