Skip to main content
Log in

Nonlinear spinor fields in LRS Bianchi type-I space-time: Theory and observation

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Within the scope of a LRS Bianchi type-I cosmological model we study the role of a nonlinear spinor field in the evolution of the Universe. In doing so, we consider a polynomial type of nonlinearity that describes different stages of the evolution. Finally, we use the observational data to fix the problem parameters that match best with the real picture of the evolution. An assessment of the age of the Universe in the case of a soft beginning of the expansion (initial speed of expansion at the singularity is zero), the age was found to be 15 billion years, whereas in the case of a hard beginning (nonzero initial speed) the Universe is found to be 13.7 billion years old. Values of the constants D1 and X1 that define the anisotropy of our model are also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  3. M. Henneaux, Phys. Rev. D 21, 857 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  4. U. Ochs and M. Sorg, Int. J. Theor. Phys. 32, 1531 (1993).

    Article  Google Scholar 

  5. B. Saha and G.N. Shikin, Gen. Relat. Grav. 29, 1099 (1997).

    Article  ADS  Google Scholar 

  6. B. Saha and G.N. Shikin, J. Math. Phys. 38, 5305 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  7. B. Saha, Phys. Rev. D 64, 123501 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  8. B. Saha and T. Boyadjiev, Phys. Rev. D 69, 124010 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  9. B. Saha, Phys. Rev. D 69, 124006 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  10. B. Saha, Phys. Particle. Nuclei. 37 (Suppl. 1), S13 (2006).

    Article  ADS  Google Scholar 

  11. B. Saha, Grav. Cosmol. 12, 215 (2006).

    ADS  Google Scholar 

  12. B. Saha, Romanian Rep. Phys. 59, 649 (2007).

    Google Scholar 

  13. B. Saha, Phys. Rev. D 74, 124030 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  14. C. Armendáriz-Picón and P. B. Greene, Gen. Rel. Grav. 35, 1637 (2003).

    Article  ADS  Google Scholar 

  15. M. O. Ribas, F. P. Devecchi, and G.M. Kremer, Phys. Rev. D 72, 123502 (2005).

    Article  ADS  Google Scholar 

  16. R. C. de Souza and G. M. Kremer, Class. Quantum Grav. 25, 225006 (2008).

    Article  ADS  Google Scholar 

  17. G.M. Kremer and R. C. de Souza, arXiv: 1301.5163.

  18. V. G. Krechet, M. L. Fel’chenkov, and G. N. Shikin, Grav. Cosmol. 14, 292 (2008).

    Article  ADS  Google Scholar 

  19. B. Saha, Centr. Euro. J. Phys. 8, 920 (2010).

    ADS  Google Scholar 

  20. B. Saha, Romanian Rep. Phys. 62, 209 (2010).

    Google Scholar 

  21. B. Saha, Astrophys. Space Sci. 331, 243 (2011).

    Article  ADS  Google Scholar 

  22. B. Saha, Int. J. Theor. Phys. 51, 1812 (2012).

    Article  Google Scholar 

  23. K. A. Bronnikov, E. N. Chudayeva, and G. N. Shikin, Class. Quantum Grav. 21, 3389 (2004).

    Article  ADS  Google Scholar 

  24. K. A. Bronnikov, E. N. Chudaeva, and G. N. Shikin, Int. J. Theor. Phys. 48, 2214 (2009).

    Article  Google Scholar 

  25. L. Fabbri, Phys. Rev. D 85, 047502 (2012).

    Article  ADS  Google Scholar 

  26. L. Fabbri, Int. J. Theor. Phys. 52, 634 (2013).

    Article  Google Scholar 

  27. S. Vignolo, L. Fabbri, and R. Cianci, J. Math. Phys. 52, 112502 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  28. B. Saha, Int. J. Theor. Phys. 53, 1109 (2014).

    Article  Google Scholar 

  29. B. Saha, Astrophys. Space Sci. 357, 28 (2015).

    Article  ADS  Google Scholar 

  30. B. Saha, European Phys. J. Plus 130, 208 (2015).

    Article  ADS  Google Scholar 

  31. B. Saha, Canadian J. Phys. 96, 116 (2016).

    Article  ADS  Google Scholar 

  32. B. Saha, European Phys. J. Plus 131, 170 (2016).

    Article  ADS  Google Scholar 

  33. G. F. Smoot et al., Astrophys. J. 396, L1 (1992).

    Article  ADS  Google Scholar 

  34. G. Hinsaw et al., Astrophys. J. Suppl. 148, 135 (2003).

    Article  ADS  Google Scholar 

  35. C.W. Misner, Astrophys. J. 151, 431 (1968).

    Article  ADS  Google Scholar 

  36. S. P. Boughn, E. S. Cheng, and D. T. Wilkinson, Astrophys. J. 243, L113 (1981).

    Article  ADS  Google Scholar 

  37. M. L. Wilson and J. Silk, Astrophys. J. 243, 14 (1981).

    Article  ADS  Google Scholar 

  38. B. Feng and X. Zhang, Phys. Lett. B 570, 145 (2003).

    Article  ADS  Google Scholar 

  39. M. Kawasaki and F. Takahashi, Phys. Lett. B 570, 151 (2003).

    Article  ADS  Google Scholar 

  40. C. Gordon and W. Hu, Phys. Rev. D 70, 083003 (2004).

    Article  ADS  Google Scholar 

  41. T. Morio and T. Takahashi, Phys. Rev. Lett. 92, 091301 (2004).

    Article  ADS  Google Scholar 

  42. Y. S. Piao, Phys. Rev. D 71, 087301 (2005).

    Article  ADS  Google Scholar 

  43. A. Rakic and J. D. Schwarz, Phys. Rev. D 75, 103002 (2007).

    Article  ADS  Google Scholar 

  44. A. Gruppuso, Phys. Rev. D 76, 083010 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  45. C.G. Boehmer and D. F. Mota, Phys. Lett. B 663, 168 (2008).

    Article  ADS  Google Scholar 

  46. C. Destri, H. J. de Vega, and N. G. Sanchez, Phys. Rev. D 78, 023013 (2008).

    Article  ADS  Google Scholar 

  47. C. L. Bennett et al., Astrophys. J. Suppl. Series 148, 1 (2003).

    Article  ADS  Google Scholar 

  48. S. Weinberg, Cosmology (Oxford University Press, New York, 2008).

    MATH  Google Scholar 

  49. A. Berrera, R. V. Buniy, and T.W. Kephart, JCAP 04, 016 (2004).

    Article  Google Scholar 

  50. L. Campanelli, P. Cea, and L. Tedesco, Phys. Rev. Lett. 97, 131302 (2006).

    Article  ADS  Google Scholar 

  51. L. Campanelli, P. Cea, and L. Tedesco, Phys. Rev. D 76, 063007 (2007).

    Article  ADS  Google Scholar 

  52. L. Campanelli, Phys. Rev. D 80, 063006 (2009).

    Article  ADS  Google Scholar 

  53. T. Koivisto and D. F. Mota, JCAP 06, 018 (2008).

    Article  ADS  Google Scholar 

  54. L. Campanelli, P. Cea, G. L. Fogli, and T. Tedesco, arXiv: 1103.2658.

  55. L. Campanelli, P. Cea, G. L. Fogli, and T. Tedesco, arXiv: 1103.6175.

  56. T.W. B. Kibble, J.Math. Phys. 2, 212 (1961).

    Article  ADS  Google Scholar 

  57. O. Farooq, An abstract of dissertation, arXiv: 1309.3710 (Table D.2).

  58. O. Farooq, D. Mania, and B. Ratra, arXiv: 1308.0834 (Table 1).

  59. Y. Chen et al., arXiv: 1312.1443 (Table 1).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, B., Rikhvitsky, V.S. Nonlinear spinor fields in LRS Bianchi type-I space-time: Theory and observation. Gravit. Cosmol. 23, 329–336 (2017). https://doi.org/10.1134/S0202289317040193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289317040193

Navigation