Gravitation and Cosmology

, Volume 23, Issue 4, pp 329–336 | Cite as

Nonlinear spinor fields in LRS Bianchi type-I space-time: Theory and observation

Article
  • 13 Downloads

Abstract

Within the scope of a LRS Bianchi type-I cosmological model we study the role of a nonlinear spinor field in the evolution of the Universe. In doing so, we consider a polynomial type of nonlinearity that describes different stages of the evolution. Finally, we use the observational data to fix the problem parameters that match best with the real picture of the evolution. An assessment of the age of the Universe in the case of a soft beginning of the expansion (initial speed of expansion at the singularity is zero), the age was found to be 15 billion years, whereas in the case of a hard beginning (nonzero initial speed) the Universe is found to be 13.7 billion years old. Values of the constants D1 and X1 that define the anisotropy of our model are also calculated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Riess et al., Astron. J. 116, 1009 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    M. Henneaux, Phys. Rev. D 21, 857 (1980).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    U. Ochs and M. Sorg, Int. J. Theor. Phys. 32, 1531 (1993).CrossRefGoogle Scholar
  5. 5.
    B. Saha and G.N. Shikin, Gen. Relat. Grav. 29, 1099 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    B. Saha and G.N. Shikin, J. Math. Phys. 38, 5305 (1997).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    B. Saha, Phys. Rev. D 64, 123501 (2001).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Saha and T. Boyadjiev, Phys. Rev. D 69, 124010 (2004).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    B. Saha, Phys. Rev. D 69, 124006 (2004).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    B. Saha, Phys. Particle. Nuclei. 37 (Suppl. 1), S13 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    B. Saha, Grav. Cosmol. 12, 215 (2006).ADSGoogle Scholar
  12. 12.
    B. Saha, Romanian Rep. Phys. 59, 649 (2007).Google Scholar
  13. 13.
    B. Saha, Phys. Rev. D 74, 124030 (2006).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    C. Armendáriz-Picón and P. B. Greene, Gen. Rel. Grav. 35, 1637 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    M. O. Ribas, F. P. Devecchi, and G.M. Kremer, Phys. Rev. D 72, 123502 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    R. C. de Souza and G. M. Kremer, Class. Quantum Grav. 25, 225006 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    G.M. Kremer and R. C. de Souza, arXiv: 1301.5163.Google Scholar
  18. 18.
    V. G. Krechet, M. L. Fel’chenkov, and G. N. Shikin, Grav. Cosmol. 14, 292 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    B. Saha, Centr. Euro. J. Phys. 8, 920 (2010).ADSGoogle Scholar
  20. 20.
    B. Saha, Romanian Rep. Phys. 62, 209 (2010).Google Scholar
  21. 21.
    B. Saha, Astrophys. Space Sci. 331, 243 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    B. Saha, Int. J. Theor. Phys. 51, 1812 (2012).CrossRefGoogle Scholar
  23. 23.
    K. A. Bronnikov, E. N. Chudayeva, and G. N. Shikin, Class. Quantum Grav. 21, 3389 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    K. A. Bronnikov, E. N. Chudaeva, and G. N. Shikin, Int. J. Theor. Phys. 48, 2214 (2009).CrossRefGoogle Scholar
  25. 25.
    L. Fabbri, Phys. Rev. D 85, 047502 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    L. Fabbri, Int. J. Theor. Phys. 52, 634 (2013).CrossRefGoogle Scholar
  27. 27.
    S. Vignolo, L. Fabbri, and R. Cianci, J. Math. Phys. 52, 112502 (2011).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    B. Saha, Int. J. Theor. Phys. 53, 1109 (2014).CrossRefGoogle Scholar
  29. 29.
    B. Saha, Astrophys. Space Sci. 357, 28 (2015).ADSCrossRefGoogle Scholar
  30. 30.
    B. Saha, European Phys. J. Plus 130, 208 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    B. Saha, Canadian J. Phys. 96, 116 (2016).ADSCrossRefGoogle Scholar
  32. 32.
    B. Saha, European Phys. J. Plus 131, 170 (2016).ADSCrossRefGoogle Scholar
  33. 33.
    G. F. Smoot et al., Astrophys. J. 396, L1 (1992).ADSCrossRefGoogle Scholar
  34. 34.
    G. Hinsaw et al., Astrophys. J. Suppl. 148, 135 (2003).ADSCrossRefGoogle Scholar
  35. 35.
    C.W. Misner, Astrophys. J. 151, 431 (1968).ADSCrossRefGoogle Scholar
  36. 36.
    S. P. Boughn, E. S. Cheng, and D. T. Wilkinson, Astrophys. J. 243, L113 (1981).ADSCrossRefGoogle Scholar
  37. 37.
    M. L. Wilson and J. Silk, Astrophys. J. 243, 14 (1981).ADSCrossRefGoogle Scholar
  38. 38.
    B. Feng and X. Zhang, Phys. Lett. B 570, 145 (2003).ADSCrossRefGoogle Scholar
  39. 39.
    M. Kawasaki and F. Takahashi, Phys. Lett. B 570, 151 (2003).ADSCrossRefGoogle Scholar
  40. 40.
    C. Gordon and W. Hu, Phys. Rev. D 70, 083003 (2004).ADSCrossRefGoogle Scholar
  41. 41.
    T. Morio and T. Takahashi, Phys. Rev. Lett. 92, 091301 (2004).ADSCrossRefGoogle Scholar
  42. 42.
    Y. S. Piao, Phys. Rev. D 71, 087301 (2005).ADSCrossRefGoogle Scholar
  43. 43.
    A. Rakic and J. D. Schwarz, Phys. Rev. D 75, 103002 (2007).ADSCrossRefGoogle Scholar
  44. 44.
    A. Gruppuso, Phys. Rev. D 76, 083010 (2007).ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    C.G. Boehmer and D. F. Mota, Phys. Lett. B 663, 168 (2008).ADSCrossRefGoogle Scholar
  46. 46.
    C. Destri, H. J. de Vega, and N. G. Sanchez, Phys. Rev. D 78, 023013 (2008).ADSCrossRefGoogle Scholar
  47. 47.
    C. L. Bennett et al., Astrophys. J. Suppl. Series 148, 1 (2003).ADSCrossRefGoogle Scholar
  48. 48.
    S. Weinberg, Cosmology (Oxford University Press, New York, 2008).MATHGoogle Scholar
  49. 49.
    A. Berrera, R. V. Buniy, and T.W. Kephart, JCAP 04, 016 (2004).CrossRefGoogle Scholar
  50. 50.
    L. Campanelli, P. Cea, and L. Tedesco, Phys. Rev. Lett. 97, 131302 (2006).ADSCrossRefGoogle Scholar
  51. 51.
    L. Campanelli, P. Cea, and L. Tedesco, Phys. Rev. D 76, 063007 (2007).ADSCrossRefGoogle Scholar
  52. 52.
    L. Campanelli, Phys. Rev. D 80, 063006 (2009).ADSCrossRefGoogle Scholar
  53. 53.
    T. Koivisto and D. F. Mota, JCAP 06, 018 (2008).ADSCrossRefGoogle Scholar
  54. 54.
    L. Campanelli, P. Cea, G. L. Fogli, and T. Tedesco, arXiv: 1103.2658.Google Scholar
  55. 55.
    L. Campanelli, P. Cea, G. L. Fogli, and T. Tedesco, arXiv: 1103.6175.Google Scholar
  56. 56.
    T.W. B. Kibble, J.Math. Phys. 2, 212 (1961).ADSCrossRefGoogle Scholar
  57. 57.
    O. Farooq, An abstract of dissertation, arXiv: 1309.3710 (Table D.2).Google Scholar
  58. 58.
    O. Farooq, D. Mania, and B. Ratra, arXiv: 1308.0834 (Table 1).Google Scholar
  59. 59.
    Y. Chen et al., arXiv: 1312.1443 (Table 1).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubna, Moscow oblastRussia

Personalised recommendations