Advertisement

Gravitation and Cosmology

, Volume 23, Issue 4, pp 320–328 | Cite as

Almost-BPS solutions in multi-center Taub-NUT

Article
  • 18 Downloads

Abstract

Microstates of multiple collinear black holes embedded in a non-collinear two-center Taub- NUT space-time are sought in 4 dimensions. A set of coupled partial differential equations are obtained and solved for almost-BPSstates, where some supersymmetry is preserved in the context of N = 2supergravity in 4 dimensions. The regularity of solutions is carefully considered, and we ensure that no CTC (closed time-like curves) are present. The larger framework is that of 11-dimensional N = 2 supergravity, and the current theory is obtained by compactifying it down to 4 dimensions. This work is a generalization (to three non-collinear centers) of a previous paper by Bena et al.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Bena and N. Warner, Adv. Theor. Math. Phys. 9, 667 (2005); hep-th/0408106.MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. B. Gutowski and H. S. Reall, JHEP 0404, 048 (2004); hep-th/0401129.ADSCrossRefGoogle Scholar
  3. 3.
    J. P. Gauntlett, J. B. Gutowski, C.M. Hull, S. Parkis, and H. S. Reall, Class. Quantum Grav. 20, 4587 (2003); hep-th/0209114.ADSCrossRefGoogle Scholar
  4. 4.
    G. Giusti and S. D. Mathur, Nucl. Phys. B 729, 203 (2005); hep-th/0409067.ADSCrossRefGoogle Scholar
  5. 5.
    I. Bena and N. P. Warner, Phys. Rev. D 74, 066001 (2006); hep-th/0505166.ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Berglund, E. G. Gimon, and T. S. Levi, JHEP 007 (2006); hep-th/0505167.Google Scholar
  7. 7.
    S. Giusto, S. D. Mathur, and A. Saxena, Nucl. Phys. B 701, 357 (2004); hep-th/0405017.ADSCrossRefGoogle Scholar
  8. 8.
    I. Bena, N. Bobev, and N.P. Warner, JHEP0708, 004 (2007); arXiv: 0705.3641.Google Scholar
  9. 9.
    G.W. Gibbons and S.W. Hawking, Phys. Lett. B 78, 430 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    G.W. Gibbons and J. P. Ruback, Comm. Math. Phys. 115, 267 (1988).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    I. Bena, P. Kraus, and N. P. Warner, Phys. Rev. D72, 084019 (2005).ADSGoogle Scholar
  12. 12.
    J. P. Gauntlett and J. B. Gutowski, Phys. Rev. D 71, 045002 (2005); hep-th/0408122.ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Elvang, R. Emparan, D. Mateos, and H. S. Reall, Phys. Rev. D 71, 024033 (2005); hep-th/0408120.ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Elvang, R. Emparan, D. Mateos, and H. S. Reall, Phys. Rev. Lett. 93, 211302 (2004); hep-th/0407065.ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    I. Bena and N. P. Warner, Lect. Notes Phys. 755 (2008); hep-th/0701216.Google Scholar
  16. 16.
    I. Bena, S. Giusto, C. Ruef, and N. P. Warner, JHEP 0911, 032 (2009); arXiv: 0908.2121.ADSCrossRefGoogle Scholar
  17. 17.
    A. Ceresole and G. Dall-Agata, JHEP 0703, 110 (2007); hep-th/0702088.ADSCrossRefGoogle Scholar
  18. 18.
    I. Bena, G. Dall-Agata, S. Giusto, C. Ruef, and N. P. Warner, JHEP 0906, 015 (2009); arXiv:0902.4526.ADSCrossRefGoogle Scholar
  19. 19.
    G. Bossard, JHEP 120, 113 (2012); arXiv:1203.0530.CrossRefGoogle Scholar
  20. 20.
    G. Bossard and C. Ruef, Gen. Rel. Grav. 44, 21 (2012); arXiv:1106.5806.ADSCrossRefGoogle Scholar
  21. 21.
    A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996); hep-th/9601029.ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    G. T. Horowitz and J. Polchinski, Phys. Rev. D 55, 6189 (1997); hep-th/9612146.ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    S. D. Mathur, Fortsch. Phys. 53, 793 (2005); hepth/0502050.ADSCrossRefGoogle Scholar
  24. 24.
    D. Mateos and P. K. Townsend, Phys. Rev. Lett. 87, 011602 (2001); hep-th/0103030.ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    R. Emparan, D. Mateos, and P. K. Townsend, JHEP 0107, 011 (2001); hep-th/0106012.ADSCrossRefGoogle Scholar
  26. 26.
    I. Bena, N. Bobev, C. Ruef, and N. P. Warner, JHEP 0907, 106 (2009); arXiv:0812.2942.ADSCrossRefGoogle Scholar
  27. 27.
    T. K. Finch, JHEP 0903, 145 (2009); hepth/0612085.ADSCrossRefGoogle Scholar
  28. 28.
    N. P. Warner, Prog. Theor. Phys. Suppl. 177, 228 (2009); arXiv: 0810.2596.ADSCrossRefGoogle Scholar
  29. 29.
    I. Bena, N. Bobev, C. Ruef, and N. Warren, Phys.Rev. Lett. 105, 231301 (2010); arXiv: 0804.4487.ADSCrossRefGoogle Scholar
  30. 30.
    C. Ruef, Nucl. Phys. Proc. Suppl. 192-193, 174 (2009); arXiv: 0901.3227.ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    K. Goldstein and S. Katmadas, JHEP 05, 08 (2009); arXiv: 0812.4183.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsIFIN-HHMagureleRomania
  2. 2.Department of PhysicsUniversity of BucharestBucharestRomania
  3. 3.Department of MathematicsEmbry-Riddle Aeronautical UniversityDaytona BeachUSA

Personalised recommendations