Gravitation and Cosmology

, Volume 23, Issue 4, pp 316–319 | Cite as

Redshift in the model of embedded spaces

Article
  • 15 Downloads

Abstract

The non-configurational geometrization of the electromagnetic field can be realized using the Model of Embedded Spaces (MES). This model assumes the existence of proper 4D space-time manifolds of particles with a nonzero rest mass and declares that physical space-time is the metric result of the dynamic embedding of these manifolds: the value of the partial contribution of the element manifold is determined by element interactions. The space of the model is provided with a Riemann-like geometry, whose differential formalism is described by a generalization of the gradient operator /∂x i /∂x i + 2u k 2/∂x[ i ∂u k ], where u i = dx i /ds is a matter velocity. In the paper, the redshift effect existing in the space of MES is considered, and its electromagnetic component is analyzed. It is shown that for cold matter of the modern Universe this component reduces to a shift in electric fields and is described by the expression \(\Delta {\omega _e}/\omega \simeq \mp \sqrt k \Delta {\varphi _e}/{c^2} = \mp 0.861 \cdot {10^{ - 21}}\Delta {\varphi _e}\left( V \right)\) , where the potential is measured in volts and the sign must be determined experimentally. Testing of the effect is the “experimentum crusis” for MES.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Oort, Bull. Astron. Inst., Netherlands 6, 249 (1932).ADSGoogle Scholar
  2. 2.
    D. Clowe et al., Astroph. J. 648, 109 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    A. Riess et al., Astron. J. 116, 1009 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    S. Perlmutter et al., Astron. J. 517, 565 (1999).CrossRefGoogle Scholar
  5. 5.
    H. Minkovski, Jahresbericht der Deutschen Mathematiker Vereinigung 18, 75 (1909).Google Scholar
  6. 6.
    G. Nordström, Ann. Phys. 42, 533 (1913).CrossRefGoogle Scholar
  7. 7.
    A. Einstein, Sitzungsber.Preuss. Acad. Wiss. 47, 831 (1915)Google Scholar
  8. 7a.
    A. Einstein, Ann. Phys. 49, 769 (1916).CrossRefGoogle Scholar
  9. 8.
    H. Weil, Sitzungsber, d. Berl. Akad., 465 (1918).Google Scholar
  10. 9.
    Th. Kaluza, Sitzungsber, d. Berl. Akad., 966 (1921).Google Scholar
  11. 10.
    O. Klein, Z. Physik 37, 895 (1926).ADSCrossRefGoogle Scholar
  12. 11.
    A. Eddington, The Combination of Relativity Theory and Quantum Theory (Dublin Institute of Advanced Studies, 1943).Google Scholar
  13. 12.
    Yu. Vladimirov, Gen. Rel. Grav 12, 1167 (1982).ADSCrossRefGoogle Scholar
  14. 13.
    N. Voicu, Progr. Electromagn. Research 113, 83 (2011).CrossRefGoogle Scholar
  15. 14.
    Y. Rund, The differential Geometry of Finsler Spaces (Springer-Verlag, 1959).CrossRefMATHGoogle Scholar
  16. 15.
    N. P. Konopleva and V. N. Popov, Gauge Fields (Atomizdat, Moscow, 1972).MATHGoogle Scholar
  17. 16.
    V. Rubakov, Usp Fiz. Nauk 177, 407 (2007).CrossRefGoogle Scholar
  18. 17.
    B. Greene, The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory (Vintage Series, Random House Inc, 2000).MATHGoogle Scholar
  19. 18.
    B. Zwiebach, First Course in String Theory. Second Edition (Cambridge University Press, 2009).CrossRefMATHGoogle Scholar
  20. 19.
    V. I. Noskov, Grav. Cosmol. 19, 257 (2013).ADSCrossRefGoogle Scholar
  21. 20.
    V. I. Noskov, Grav. Cosmol. 22, 199 (2016).ADSCrossRefGoogle Scholar
  22. 21.
    L. D. Landau and E.M. Lifshitz, The Theory of Field (Nauka, Moscow, 1988).MATHGoogle Scholar
  23. 22.
    E. Chase et al., LIGO-T1500123-v1, 1 (2015).Google Scholar
  24. 23.
    Yu. D. Bayukov et al., JETP Lett. 90, 547 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Continuous Media Mechanics, Ural BranchRussian Academy of SciencesPermRussia

Personalised recommendations