Skip to main content
Log in

Relationship of gauge gravitation theory in Riemann-Cartan space-time and general relativity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We study the simplest version of a gauge gravitation theory in Riemann-Cartan space-time leading to the solution of the cosmological singularity problem and the dark energy problem. It is shown that this theory under certain restrictions on the indefinite parameters of the gravitational Lagrangian, in the case of usual gravitating systems, leads to Einstein gravitational equations with an effective cosmological constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Minkevich, “Gauge gravitation theory in Riemann-Cartan space-time and gravitational interaction,” Grav. Cosmol. 22, 148 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. A. V. Minkevich, “Towards the theory of regular accelerating Universe in Riemann-Cartan space-time,” Int. J. Mod. Phys. A 31, 1641011 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A. V. Minkevich, A. S. Garkun, and V. I. Kudin, “On some physical aspects of isotropic cosmology in Riemann-Cartan space-time,” JCAP 03, 040 (2013); arXiv: 1302.2578.

    Article  ADS  Google Scholar 

  4. A. V. Minkevich, “Limiting energy density and a regular accelerating Universe in Riemann-Cartan spacetime,” JETP Lett. 94, 831 (2011).

    Article  ADS  Google Scholar 

  5. A. V. Minkevich, “De Sitter space-time with torsion as physical space-time in the vacuum and isotropic cosmology,” Mod. Phys. Let. A 26, 259 (2011); arXiv: 1002.0538.

    Article  ADS  MATH  Google Scholar 

  6. A. V. Minkevich, A. S. Garkun, and V. I. Kudin, “Regular accelerating universe without dark energy in Poincarégauge theory of gravity,” Class. Quantum Grav. 24, 5835 (2007); arXiv: 0706.1157.

    Article  ADS  MATH  Google Scholar 

  7. K. Hayashi and T. Shirafuji, “Gravity from Poincarégauge theory of the fundamental particles. 1. Linear and quadratic Lagrangians,” Progr. Theor. Phys. 64, 866 (1980) [Erratum: 65, 2079 (1981)]

    Article  ADS  MATH  Google Scholar 

  8. K. Hayashi and T. Shirafuji, “Gravity from PoincaréGauge theory of the fundamental particles. 2. Equations of motion for test bodies and various limits,” Progr. Theor. Phys. 64, 883 (1980) [Erratum: 65, 2079 (1981)]

    Article  ADS  MATH  Google Scholar 

  9. K. Hayashi and T. Shirafuji, “Gravity from PoincaréGauge theory of the fundamental particles. 3. Weak field approximation,” Progr. Theor. Phys. 64, 1435 (1980) [Erratum: 66, 741 (1981)]

    Article  ADS  MATH  Google Scholar 

  10. K. Hayashi and T. Shirafuji, “Gravity from PoincaréGauge theory of the fundamental particles. 4. Mass and energy of particle spectrum,” Progr. Theor. Phys. 64, 2222 (1980).

    Article  ADS  MATH  Google Scholar 

  11. M. Blagojević, Gravitation and Gauge Symmetries (IOP Publishing, Bristol, 2002).

    Book  MATH  Google Scholar 

  12. A. Trautman, “The Einstein-Cartan theory,” in Encyclopedia of Mathematical Physics, Vol. 2, Ed. by J.-P. Francoise et al. (Elsevier, Oxford, 2006), p. 189.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Minkevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minkevich, A.V. Relationship of gauge gravitation theory in Riemann-Cartan space-time and general relativity. Gravit. Cosmol. 23, 311–315 (2017). https://doi.org/10.1134/S0202289317040144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289317040144

Navigation