Advertisement

Gravitation and Cosmology

, Volume 23, Issue 4, pp 311–315 | Cite as

Relationship of gauge gravitation theory in Riemann-Cartan space-time and general relativity

  • A. V. Minkevich
Article
  • 23 Downloads

Abstract

We study the simplest version of a gauge gravitation theory in Riemann-Cartan space-time leading to the solution of the cosmological singularity problem and the dark energy problem. It is shown that this theory under certain restrictions on the indefinite parameters of the gravitational Lagrangian, in the case of usual gravitating systems, leads to Einstein gravitational equations with an effective cosmological constant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Minkevich, “Gauge gravitation theory in Riemann-Cartan space-time and gravitational interaction,” Grav. Cosmol. 22, 148 (2016).ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    A. V. Minkevich, “Towards the theory of regular accelerating Universe in Riemann-Cartan space-time,” Int. J. Mod. Phys. A 31, 1641011 (2016).ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    A. V. Minkevich, A. S. Garkun, and V. I. Kudin, “On some physical aspects of isotropic cosmology in Riemann-Cartan space-time,” JCAP 03, 040 (2013); arXiv: 1302.2578.ADSCrossRefGoogle Scholar
  4. 4.
    A. V. Minkevich, “Limiting energy density and a regular accelerating Universe in Riemann-Cartan spacetime,” JETP Lett. 94, 831 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    A. V. Minkevich, “De Sitter space-time with torsion as physical space-time in the vacuum and isotropic cosmology,” Mod. Phys. Let. A 26, 259 (2011); arXiv: 1002.0538.ADSCrossRefMATHGoogle Scholar
  6. 6.
    A. V. Minkevich, A. S. Garkun, and V. I. Kudin, “Regular accelerating universe without dark energy in Poincarégauge theory of gravity,” Class. Quantum Grav. 24, 5835 (2007); arXiv: 0706.1157.ADSCrossRefMATHGoogle Scholar
  7. 7.
    K. Hayashi and T. Shirafuji, “Gravity from Poincarégauge theory of the fundamental particles. 1. Linear and quadratic Lagrangians,” Progr. Theor. Phys. 64, 866 (1980) [Erratum: 65, 2079 (1981)]ADSCrossRefMATHGoogle Scholar
  8. 7a.
    K. Hayashi and T. Shirafuji, “Gravity from PoincaréGauge theory of the fundamental particles. 2. Equations of motion for test bodies and various limits,” Progr. Theor. Phys. 64, 883 (1980) [Erratum: 65, 2079 (1981)]ADSCrossRefMATHGoogle Scholar
  9. 7b.
    K. Hayashi and T. Shirafuji, “Gravity from PoincaréGauge theory of the fundamental particles. 3. Weak field approximation,” Progr. Theor. Phys. 64, 1435 (1980) [Erratum: 66, 741 (1981)]ADSCrossRefMATHGoogle Scholar
  10. 7c.
    K. Hayashi and T. Shirafuji, “Gravity from PoincaréGauge theory of the fundamental particles. 4. Mass and energy of particle spectrum,” Progr. Theor. Phys. 64, 2222 (1980).ADSCrossRefMATHGoogle Scholar
  11. 8.
    M. Blagojević, Gravitation and Gauge Symmetries (IOP Publishing, Bristol, 2002).CrossRefMATHGoogle Scholar
  12. 9.
    A. Trautman, “The Einstein-Cartan theory,” in Encyclopedia of Mathematical Physics, Vol. 2, Ed. by J.-P. Francoise et al. (Elsevier, Oxford, 2006), p. 189.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of Theoretical Physics and AstrophysicsBelarusian State UniversityMinskBelarus
  2. 2.Department of Physics and Computer MethodsWarmia and Mazury University in OlsztynWarmiaPoland

Personalised recommendations