Advertisement

Gravitation and Cosmology

, Volume 23, Issue 4, pp 384–391 | Cite as

Products of thermodynamic parameters of the generalized charged rotating black hole and the Reissner–Nordström black hole with a global monopole

Article

Abstract

We investigate the thermodynamics of the Kerr–Newman–Kasuya black hole and the Reissner–Nordström black hole with a global monopole on inner and outer horizons. Products of surface gravities, surface temperatures, Komar energies, electromagnetic potentials, angular velocities, areas, entropies, horizon radii and irreducible masses at the Cauchy and event horizons are calculated. It is observed that the product of surface gravities, the surface temperature product and the product of Komar energies, electromagnetic potentials and angular velocities at horizons are not universal quantities for these black holes. Products of areas and entropies at the horizons are independent of black hole masses. The heat capacity is calculated for the generalized charged rotating black hole, and a phase transition is observed under certain conditions on r.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Christodoulou, Phys. Rev. Lett. 25, 1596 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    D. Christodoulou and R. Ruffini, Phys. Rev. D 4, 3552 (1971).ADSCrossRefGoogle Scholar
  3. 3.
    R. Penrose and R.M. Floyd, Nature 229, 177 (1971)ADSGoogle Scholar
  4. 3a.
    S. Hawking, Phys. Rev. Lett. 26, 1344 (1971).ADSCrossRefGoogle Scholar
  5. 4.
    J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973)ADSMathSciNetCrossRefGoogle Scholar
  6. 4a.
    J. D. Bekenstein, Phys. Rev. D 9, 3292 (1974).ADSCrossRefGoogle Scholar
  7. 5.
    S.W. Hawking, Nature 248, 30 (1974).ADSCrossRefGoogle Scholar
  8. 6.
    S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).ADSCrossRefGoogle Scholar
  9. 7.
    D. Pavon, Phys. Rev. D 43, 2495 (1990)ADSCrossRefGoogle Scholar
  10. 7a.
    S. W. Hawking and D. N. Page, Commun. Math. Phys. 87, 577 (1983).ADSCrossRefGoogle Scholar
  11. 8.
    E. Newman, K. Chinnaparad, A. Exton, A. Prakash, and R. Torrence, J. Math. Phys. 6, 918 (1965).ADSCrossRefGoogle Scholar
  12. 9.
    M. Ansorg and J. Hennig, Class. Quantum Grav. 25, 222001 (2008)ADSCrossRefGoogle Scholar
  13. 9a.
    M. Ansorg and J. Hennig, Phys. Rev. Lett. 102, 221102 (2009).ADSMathSciNetCrossRefGoogle Scholar
  14. 10.
    M. Cvetič, G. W. Gibbons, and C. N. Pope, Phys. Rev. Lett. 106, 121301 (2011).ADSMathSciNetCrossRefGoogle Scholar
  15. 11.
    E. Witten, Adv. Theor.Math. Phys. 2, 505 (1998).MathSciNetCrossRefGoogle Scholar
  16. 12.
    A. Castro and M. J. Rodriguez, Phys. Rev. D 86, 024008 (2012).ADSCrossRefGoogle Scholar
  17. 13.
    F. Larsen, Phys. Rev. D 56, 1005 (1997).ADSMathSciNetCrossRefGoogle Scholar
  18. 14.
    P. Pradhan, Eur. Phys. J. C 74, 2887 (2014).ADSCrossRefGoogle Scholar
  19. 15.
    P. Pradhan, arXiv:1503.04514.Google Scholar
  20. 16.
    M. Visser, Phys. Rev. D 88, 044014 (2013).ADSCrossRefGoogle Scholar
  21. 17.
    H. Liu, H. Lu, M. Luoa, and K. Shao, J. High Energy Phys. 12, 054 (2010).ADSCrossRefGoogle Scholar
  22. 18.
    B. Chen, S.-X. Liu, and J.-J. Zhang, J. High Energy Phys. 1211, 017 (2012).ADSCrossRefGoogle Scholar
  23. 19.
    M. Cvetič and F. Larsen, J. High Energy Phys. 0909, 088 (2009).ADSCrossRefGoogle Scholar
  24. 20.
    A. Tomimatsu and H. Sato, Phys. Rev. Lett. 29, 1344 (1972).ADSCrossRefGoogle Scholar
  25. 21.
    F. J. Ernst, Phys. Rev. 167, 1175 (1968); 168, 1415 (1968); Phys. Rev. D 7, 2520 (1973).ADSCrossRefGoogle Scholar
  26. 22.
    M. Yamazaki, J. Math. Phys. 18, 2502 (1977); 19, 1376 1978.ADSCrossRefGoogle Scholar
  27. 23.
    M. Kasuya and M. Kamata, Nuovo Cim. A 66, 1 (1981).Google Scholar
  28. 24.
    M. Kamata and M. Kasuya, Phys. Lett. B 103, 351 (1981).ADSCrossRefGoogle Scholar
  29. 25.
    M. Kasuya Phys. Rev. D 25, 4 (1982).MathSciNetCrossRefGoogle Scholar
  30. 26.
    S. Chandrashekar, The Mathematical Theory of Black Holes (Oxford University Press, 1983).Google Scholar
  31. 27.
    S. Hawking, Phys. Rev. Lett. 26, 1344 (1971).ADSCrossRefGoogle Scholar
  32. 28.
    E. Poisson, A Relativist’s Toolkit: The Mathematics of Black HoleMechanics (Cambridge University Press, 2007).MATHGoogle Scholar
  33. 29.
    A. Komar, Phys. Rev. 113, 934 (1959).ADSMathSciNetCrossRefGoogle Scholar
  34. 30.
    L. Smarr, Phys. Rev. Lett. 30, 71 (1973)ADSCrossRefGoogle Scholar
  35. 30a.
    L. Smarr, Phys. Rev. D 7, 289 (1973).ADSCrossRefGoogle Scholar
  36. 31.
    J.M. Bardeen, B. Carter, and S. W. Hawking, Commun. Math. Phys. 31, 161 (1973).ADSCrossRefGoogle Scholar
  37. 32.
    D. J. Gross, M. J. Perry, and L. G. Yaffe, Phys. Rev. D 25, 330 (1982).ADSMathSciNetCrossRefGoogle Scholar
  38. 33.
    M. Barriola and A. Vilenkin, Phys. Rev. Lett. 63, 341 (1989).ADSCrossRefGoogle Scholar
  39. 34.
    H.W. Yu, Nucl. Phys. B 430, 427 (1994).ADSCrossRefGoogle Scholar
  40. 35.
    S. Q. Wu and J.-J. Peng, Class. Quantum Grav. 24, 5123 (2007).ADSCrossRefGoogle Scholar
  41. 36.
    J. P. Preskill, Phys. Rev. Lett. 43, 1365 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.School of Natural Sciences (SNS)National University of Sciences and Technology (NUST), H-12IslamabadPakistan

Personalised recommendations