Gravitation and Cosmology

, Volume 23, Issue 4, pp 375–380 | Cite as

New exact solutions for a chiral cosmological model in 5D EGB gravity

  • S. D. Maharaj
  • A. Beesham
  • S. V. Chervon
  • A. S. Kubasov
Article
  • 11 Downloads

Abstract

We consider a chiral cosmological model in the framework of Einstein–Gauss–Bonnet cosmology. Using a decomposition of the latter equations in such a way that the first chiral field is responsible for the Einstein part of the model while the second field together with the kinetic interaction is connected with the Gauss–Bonnet part of the theory, we find new exact solutions for the 2-component chiral cosmological model with and without a kinetic interaction between the fields.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Halliwell, Phys. Lett. B 185, 341 (1987).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    G. F. R. Ellis, and M. S. Madsen, Class. Quantum Grav. 8, 667 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    S. V. Chervon and V. M. Zhuravlev, Russ. Phys. J. 39, 776 (1996).CrossRefGoogle Scholar
  4. 4.
    S. V. Chervon, V.M. Zhuravlev, and V. K. Shchigolev, Phys. Lett. B 398, 269 (1997).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S. V. Chervon, Quantum Matter 2, 71 (2013).CrossRefGoogle Scholar
  6. 6.
    S. Yu. Vernov, Teor. Mat. Fiz. 155, 47 (2008)CrossRefGoogle Scholar
  7. 6a.
    S. Yu. Vernov, Theor. Math. Phys. 155, 544 (2008).CrossRefGoogle Scholar
  8. 7.
    A. Paliathanasis, and M. Tsamparlis, Phys. Rev.D 90, 043529 (2014).ADSCrossRefGoogle Scholar
  9. 8.
    K. Bamba, S. D. Odintsov, and P. V. Tretyakov, Eur. Phys. J. C 75, 344 (2015).ADSCrossRefGoogle Scholar
  10. 9.
    S. V. Chervon, S. D. Maharaj, A. Beesham, and A. S. Kubasov, Grav. Cosmol. 20, 176 (2014).ADSCrossRefGoogle Scholar
  11. 10.
    D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656 (1985).ADSCrossRefGoogle Scholar
  12. 11.
    A. Anabalon, N. Deruelle, Y. Morisawa, J. Oliva, M. Sasaki, D. Tempo, and R. Troncoso, Class. Quantum Gravity 26, 065002 (2009).ADSCrossRefGoogle Scholar
  13. 12.
    H. Maeda, Phys. Rev. D 73, 104004 (2006).ADSMathSciNetCrossRefGoogle Scholar
  14. 13.
    S. D. Maharaj, B. Chilambwe, and S. Hansraj, Phys. Rev. D 91, 084049 (2015).ADSMathSciNetCrossRefGoogle Scholar
  15. 14.
    S. Hansraj, B. Chilambwe, and S. D. Maharaj, Eur. Phys. J. C, 75, 277 (2015).ADSCrossRefGoogle Scholar
  16. 15.
    S. G. Ghosh, M. Amir, and S. D. Maharaj, “Quintessence background for 5D Einstein–Gauss–Bonnet black holes,” arXiv: 1611.02936.Google Scholar
  17. 16.
    A. Beesham, S. V. Chervon, S. D. Maharaj, and A. S. Kubasov, Int. J. Theor. Phys. 54, 884 (2015).CrossRefGoogle Scholar
  18. 17.
    R. R. Abbyazov and S. V. Chervon, Grav. Cosmol. 18, 262 (2012).ADSCrossRefGoogle Scholar
  19. 18.
    R. R. Abbyazov and S. V. Chervon, Mod. Phys. Lett. A 28, 1350024 (2013).ADSCrossRefGoogle Scholar
  20. 19.
    A. V. Astashenok, A. V. Yurov, S. V. Chervon, E. V. Shabanov, and M. Sami, Astrophys. Space Sci. 353, 319 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. D. Maharaj
    • 1
  • A. Beesham
    • 2
  • S. V. Chervon
    • 1
    • 3
  • A. S. Kubasov
    • 3
  1. 1.Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Department of Mathematical SciencesUniversity of ZululandKwa-DlangezwaSouth Africa
  3. 3.Laboratory of Gravitation, Cosmology, AstrophysicsUlyanovsk State Pedagogical UniversityUlyanovskRussia

Personalised recommendations