Gravitation and Cosmology

, Volume 23, Issue 4, pp 367–374 | Cite as

Exact inflation in Einstein–Gauss–Bonnet gravity

Article
  • 22 Downloads

Abstract

We study cosmological inflation in the Einstein gravity model with the additionally included Gauss–Bonnet term nonminimally coupled to a scalar field. We prove that inflationary solutions of exponential and power-law types are allowable, and we found few examples of them. We also propose a method for construction of exact inflationary solutions for a single scalar field with a given scale factor and Gauss–Bonnet coupling term in a spatially flat Friedmann–Robertson–Walker Universe on the basis of connection with standard inflation and using special assumptions. With one special anzatz we presented the set of equations in a form that allows for generation of exact solutions (at least in quadratures) of a wide class by setting the scale factor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Starobinsky, Phys. Lett. B 91, 99 (1980)ADSCrossRefGoogle Scholar
  2. 1a.
    A. H. Guth, Phys. Rev. D23, 347 (1981)ADSGoogle Scholar
  3. 1b.
    A.D. Linde, Phys. Lett. B 108, 389 (1982)ADSCrossRefGoogle Scholar
  4. 1c.
    A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).ADSCrossRefGoogle Scholar
  5. 2.
    V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, “Theory of cosmological perturbations,” Phys. Rep. 215, 203 (1992).ADSMathSciNetCrossRefGoogle Scholar
  6. 3.
    A. R. Liddle and D. H. Lyth, Phys. Rep. 231, 1 (1993).ADSCrossRefGoogle Scholar
  7. 4.
    S. J. Perlmutter, G. Aldering, G. Goldhaber, et al., Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  8. 4a.
    A. G. Riess, A. V. Filippenko, P. Challis, et al., Astron. J. 116, 1009 (1998).ADSCrossRefGoogle Scholar
  9. 5.
    P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594, A13 (2016).CrossRefGoogle Scholar
  10. 6.
    B. Zwiebach, Phys. Lett. B 156, 315 (1985)ADSCrossRefGoogle Scholar
  11. 6a.
    B. Zumino, Phys. Lett. 137, 109 (1986).Google Scholar
  12. 7.
    D. J. Grossa and J. H. Sloana, Nucl. Phys. B 291, 41 (1987)ADSCrossRefGoogle Scholar
  13. 7a.
    M. Gasperini, M. Maggiore, and G. Veneziano, Nucl. Phys. B 494, 315 (1997).ADSCrossRefGoogle Scholar
  14. 8.
    ATLAS Collaboration, Eur. Phys. J. C 76, 6 (2016).ADSCrossRefGoogle Scholar
  15. 9.
    F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008).ADSCrossRefGoogle Scholar
  16. 10.
    R. G. Cai, Z. K. Guo, and S. J. Wang, Phys. Rev. D 92, 063514 (2015).ADSCrossRefGoogle Scholar
  17. 11.
    D. J. Lovelock, J.Math. Phys. 12, 498 (1971).ADSCrossRefGoogle Scholar
  18. 12.
    Z. Guo and D. Schwarz, Phys. Rev. D81, 123520 (2010).ADSGoogle Scholar
  19. 13.
    S. Koh, B. Lee, W. Lee, and G. Tumurtushaa, Phys. Rev. D 90, 063527 (2014).ADSCrossRefGoogle Scholar
  20. 14.
    P. X. Jiang, J.W. Hu, and Z. K. Guo, Phys. Rev. D 88, 123508 (2013).ADSCrossRefGoogle Scholar
  21. 15.
    P. Kanti, R. Gannouji, and N. Dadhich, Phys. Rev. D 92, 041302 (2015).ADSCrossRefGoogle Scholar
  22. 16.
    G. Hikmawan, J. Soda, A. Suroso, and F. P. Zen, Phys. Rev. D 93, 068301 (2016).ADSMathSciNetCrossRefGoogle Scholar
  23. 17.
    S. Nojiri, S. D. Odintsov, and M. Sasaki, Phys. Rev. D 71, 123509 (2005).ADSCrossRefGoogle Scholar
  24. 18.
    Z. Guo and D. Schwarz, Phys. Rev. D 80, 123520 (2009).ADSCrossRefGoogle Scholar
  25. 19.
    S. Lahiri, JCAP 1609, 09, 025 (2016).ADSCrossRefGoogle Scholar
  26. 20.
    J. Mathew and S. Shankaranarayanan, Astropart. Phys. 84, 1 (2016).ADSCrossRefGoogle Scholar
  27. 21.
    A.D. Linde, Phys. Lett. B 129, 177 (1983).ADSCrossRefGoogle Scholar
  28. 22.
    J. E. Lidsey, Class. Quantum Grav. 8, 923 (1991).ADSMathSciNetCrossRefGoogle Scholar
  29. 23.
    G. G. Ivanov, in Gravitaciya i Teoriya Otnositel’nosti (18th issue, Kazan, 1981), p.54.Google Scholar
  30. 24.
    J. D. Barrow, Phys. Lett. B 235, 40 (1990).ADSMathSciNetCrossRefGoogle Scholar
  31. 25.
    T. Piran, Phys. Lett. B181, 238 (1986).ADSCrossRefGoogle Scholar
  32. 26.
    F. Lucchin and S. Matarrese, Phys. Rev. D 32, 1316 (1985).ADSCrossRefGoogle Scholar
  33. 27.
    C. Wetterich, Astron. Astrophys. 301, 321 (1988)ADSGoogle Scholar
  34. 34a.
    B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988).ADSCrossRefGoogle Scholar
  35. 28.
    G. F. R. Ellis and M. S. Madsen, Class. Quantum Grav. 8, 667 (1991).ADSCrossRefGoogle Scholar
  36. 29.
    S. V. Chervon, V.M. Zhuravlev, and V. K. Shchigolev, Phys. Lett. B 398, 269 (1997).ADSMathSciNetCrossRefGoogle Scholar
  37. 30.
    V. M. Zhuravlev, S. V. Chervon, and V. K. Shchigolev, J. Exp. Theor. Phys. 87, 223 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussia
  2. 2.Ulyanovsk State Pedagogical UniversityUlyanovskRussia
  3. 3.Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations