Gravitation and Cosmology

, Volume 23, Issue 4, pp 381–383 | Cite as

Evolution of two-horizon metrics revisited

  • M. L. Fil’chenkov
  • Yu. P. Laptev
  • G. V. Borodin
Article
  • 11 Downloads

Abstract

The Kerr–Newman and Kottler metrics with two horizons are considered. The evolution of their horizons is analyzed in terms of an effective temperature. One of the horizons proves to decay much faster than the other. The results are applied to black hole physics and cosmology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Friedmann Laboratory Publ., St. Petersburg, 1994).Google Scholar
  2. 2.
    M. L. Fil’chenkov, Yu. P. Laptev, and G. V. Borodin, Grav. Cosmol. 23, 80 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    E. N. Newman et al., J. Math. Phys. 6, 918 (1965).ADSCrossRefGoogle Scholar
  4. 4.
    H. Reissner, Ann. Phys. 50, 15 (1916).Google Scholar
  5. 5.
    G. Nordström, Proc. Kon. Ned. Akad. Wt. 20, 1238 (1918).ADSGoogle Scholar
  6. 6.
    R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).ADSCrossRefGoogle Scholar
  8. 8.
    D. V. Gal’tsov, Particles and Fields in the Vicinity of Black Holes (Moscow University Press, Moscow, 1986, in Russian).Google Scholar
  9. 9.
    I. D. Novikov and V. P. Frolov, Black Holes Physics (Nauka, Fizmatlit, Moscow, 1986, in Russian).Google Scholar
  10. 10.
    R. Penrose, Nuovo Cim. 1, 252 (1969).Google Scholar
  11. 11.
    F. Kottler, Ann. Phys. 56, 401 (1918).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. L. Fil’chenkov
    • 1
  • Yu. P. Laptev
    • 1
  • G. V. Borodin
    • 1
  1. 1.Institute of Gravitation and CosmologyRUDN UniversityMoscowRussia

Personalised recommendations