Gravitation and Cosmology

, Volume 23, Issue 4, pp 343–348 | Cite as

Dyonic configurations in nonlinear electrodynamics coupled to general relativity

Article

Abstract

We consider static, spherically symmetric configurations in general relativity, supported by nonlinear electromagnetic fields with gauge-invariant Lagrangians depending on the single invariant f = FμνFμν. After a brief review on black hole (BH) and solitonic solutions, obtained so far with pure electric or magnetic fields, an attempt is made to obtain dyonic solutions, those with both electric and magnetic charges. A general scheme is suggested, leading to solutions in quadratures for an arbitrary Lagrangian function L(f) (up to some monotonicity restrictions); such solutions are expressed in terms of f as a new radial coordinate instead of the usual coordinate r. For the truncated Born-Infeld theory (depending on the invariant f only), a general dyonic solution is obtained in terms of r. A feature of interest in this solution is the existence of a special case with a self-dual electromagnetic field, f ≡ 0 and the Reissner-Nordström metric.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born and L. Infeld, “Foundations of the new field theory,” Proc. R. Soc. Lond. 144, 425 (1934).ADSCrossRefMATHGoogle Scholar
  2. 2.
    W. Heisenberg and H. Euler, “Folgerungen aus der Diracschen Theorie des Positrons,” Z. Phys. 98, 714 (1936).ADSCrossRefMATHGoogle Scholar
  3. 3.
    J. Plebanski, Non-Linear Electrodynamics—A Study (C.I.E.A. del I.P.N., Mexico City, 1966).Google Scholar
  4. 4.
    K. A. Bronnikov, “Regular magnetic black holes and monopoles from nonlinear electrodynamics,” Phys. Rev. D 63, 044005 (2001); gr-qc/0006014ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Pellicer and R. J. Torrence, “Nonlinear electrodynamics and general relativity,” J. Math. Phys. 10, 1718 (1969).ADSCrossRefGoogle Scholar
  6. 6.
    K. A. Bronnikov and G. N. Shikin, “On the Reissner-Nordström problem with a nonlinear electromagnetic field,” in Classical and Quantum Theory of Gravity (Trudy IF AN BSSR, Minsk, 1976), p. 88 (in Russian)Google Scholar
  7. K.
    A. Bronnikov, V. N. Melnikov, G. N. Shikin, and K. P. Staniukovich, “Scalar, electromagnetic, and gravitational fields interaction: particlelike solutions,” Ann. Phys. (N.Y.) 118, 84 (1979).ADSCrossRefGoogle Scholar
  8. 7.
    E. Ayon-Beato and A. Garcia, “Regular black hole in general relativity coupled to nonlinear electrodynamics,” Phys. Rev. Lett. 80, 5056 (1998).ADSCrossRefGoogle Scholar
  9. 8.
    K. A. Bronnikov, “Comment on ‘Regular black hole in general relativity coupled to nonlinear electrodynamics’,” Phys. Rev. Lett. 85, 4641 (2000).ADSCrossRefGoogle Scholar
  10. 9.
    A. Burinskii and S. R. Hildebrandt, “New type of regular black holes and particlelike solutions from nonlinear electrodynamics,” Phys. Rev. D 65, 104017 (2002); hep-th/0202066.ADSMathSciNetCrossRefGoogle Scholar
  11. 10.
    A. Burinskii and S. R. Hildebrandt, “Regular black holes and confinement,” Grav. Cosmol. 9, 20 (2003); Czech. J. Phys. 53, B283 (2003); hep-th/0210276.ADSMATHGoogle Scholar
  12. 11.
    J. Diaz-Alonso and D. Rubiera-Garcia, “Electrostatic spherically symmetric configurations in gravitating nonlinear electrodynamics,” Phys. Rev. D 81, 064021 (2010); arXiv:0908.3303.ADSCrossRefGoogle Scholar
  13. 12.
    Remo Ruffini, Yuan-Bin Wu, and She-Sheng Xue, “Einstein-Euler-Heisenberg theory and charged black holes,” Phys. Rev. D 88, 085004 (2013); arXiv: 1307.4951.ADSCrossRefGoogle Scholar
  14. 13.
    G. O. Schellstede, V. Perlick, and C. Lämmerzahl, “On causality in nonlinear vacuum electrodynamics of the Plebański class,” Ann. Phys. (Berlin) 528, 738 (2016); arXiv: 1604.02545.ADSCrossRefMATHGoogle Scholar
  15. 14.
    J. Matyjasek, D. Tryniecki, and M. Klimek, “Regular black holes in an asymptotically de Sitter universe,” Mod. Phys. Lett. A 23, 3377 (2009); arXiv: 0809.2275.ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 15.
    J. Matyjasek, P. Sadurski, and D. Tryniecki, “Inside the degenerate horizons of regular black holes,” Phys. Rev. D 87, 124025 (2013); arXiv: 1304.6347.ADSCrossRefGoogle Scholar
  17. 16.
    S. Fernando, “Regular black holes in de Sitter universe: scalar field perturbations and quasinormal modes,” Int. J. Mod. Phys. D 24, 1550104 (2015); arXiv:1508.03581.ADSMathSciNetCrossRefGoogle Scholar
  18. 17.
    N. Bretón, “Smarr’s formula for black holes with non-linear electrodynamics,” Gen. Rel. Grav. 37, 643 (2005); gr-qc/0405116.ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 18.
    Yun Soo Myung, Yong-Wan Kim, and Young-Jai Park, “Entropy of an extremal regular black hole,” Phys. Lett. B 659, 832 (2008); arXiv: 0705.2478.ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 19.
    N. Bretón and S. E. Perez Bergliaffa, “On the stability of black holes with nonlinear electromagnetic fields,” arXiv: 1402.2922Google Scholar
  21. 20.
    Meng-Sen Ma, “Magnetically charged regular black hole in a model of nonlinear electrodynamics,” Annals of Phys. 362, 529 (2015); arXiv: 1509.05580.ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 21.
    Hristu Culetu, “On a regular charged black hole with a nonlinear electric source,” Int. J. Theor. Phys. 54, 2855 (2015); arXiv:1408.3334.MathSciNetCrossRefMATHGoogle Scholar
  23. 22.
    L. Balart and F. Peña, “Regular charged black holes, quasilocal energy and energy conditions,” arXiv: 1603.07782.Google Scholar
  24. 23.
    S. I. Kruglov, “Asymptotic Reissner-Nordström solution within nonlinear electrodynamics,” Phys. Rev. D 94, 044026 (2016); arXiv: 1608.04275.ADSMathSciNetCrossRefGoogle Scholar
  25. 24.
    Zhong-Ying Fan and Xiaobao Wang, “Construction of regular black holes in general relativity,” Phys. Rev. D 94, 124027 (2016); arXiv: 1610.02636.ADSCrossRefGoogle Scholar
  26. 25.
    K. A. Bronnikov, G. N. Shikin, and E. N. Sibileva, “Self-gravitating stringlike configurations from nonlinear electodynamics,” Grav. Cosmol. 9, 169 (2003); gr-qc/0308002.ADSMATHGoogle Scholar
  27. 26.
    C. Bambi and L. Modesto, “Rotating regular black holes,” Phys. Lett. B 721, 329 (2013); arXiv: 1302.6075.ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 27.
    I. Dymnikova and E. Galaktionov, “Regular rotating electrically charged black holes and solitons in nonlinear electrodynamics minimally coupled to gravity,” Class. Quantum Grav. 32, 165015 (2015); arXiv: 1510.01353.ADSCrossRefMATHGoogle Scholar
  29. 28.
    I. Dymnikova, “Electromagnetic source for the Kerr-Newman geometry,” Int. J. Mod. Phys. D 24, 1550094 (2015); arXiv: 1510.01352.ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 29.
    A. V. B. Arellano and F. S. N. Lobo, “Evolving wormhole geometries within nonlinear electrodynamics,” Class. Quantum Grav. 23, 5811 (2006); grqc/0608003.ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 30.
    Ch. G. Boehmer, T. Harko, and F. S.N. Lobo, “Conformally symmetric traversable wormholes,” Phys. Rev. D 76, 084014 (2007); arXiv: 0708.1537.ADSMathSciNetCrossRefGoogle Scholar
  32. 31.
    A. V. B. Arellano, N. Bretón, and R. Garcia-Salcedo, “Some properties of evolving wormhole geometries within nonlinear electrodynamics,” Gen. Rel. Grav. 41, 2561 (2009); arXiv: 0804.3944.ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 32.
    C. Moreno and O. Sarbach, “Stability properties of black holes in self-gravitating nonlinear electrodynamics,” Phys. Rev. D 67, 024028 (2003); grqc/0208090.ADSMathSciNetCrossRefGoogle Scholar
  34. 33.
    I. Dymnikova and E. Galaktionov, “Stability of a vacuum nonsingular black hole,” Class. Quantum Grav. 22, 2331 (2005); gr-qc/0409049.ADSCrossRefMATHGoogle Scholar
  35. 34.
    N. Bretón, “Stability of nonlinear magnetic black holes,” Phys. Rev. D 72, 044015 (2005); hepth/0502217.ADSCrossRefGoogle Scholar
  36. 35.
    Jin Li, Hong Ma, and Kai Lin, “Dirac quasinormal modes in spherically symmetric regular black holes,” Phys. Rev. D 88, 064001 (2013); arXiv: 1308.6499.ADSCrossRefGoogle Scholar
  37. 36.
    Jin Li, Kai Lin, and Nan Yang, “Nonlinear electromagnetic quasinormal modes and Hawking radiation of a regular black hole with magnetic charge,” Eur. Phys. J. C 75, 131 (2015); arXiv: 1409.5988.ADSCrossRefGoogle Scholar
  38. 37.
    A. Flachi and J. P. S. Lemos, “Quasinormal modes of regular black holes,” Phys. Rev. D 87, 024034 (2013); arXiv: 1211.6212.ADSCrossRefGoogle Scholar
  39. 38.
    B. Toshmatov, A. Abdujabbarov, Z. Stuchlík, and B. Ahmedov, “Quasinormal modes of test fields around regular black holes,” Phys. Rev. D 91, 083008 (2015); arXiv: 1503.05737.ADSCrossRefGoogle Scholar
  40. 39.
    W. Berej and J. Matyjasek, “Vacuum polarization in the spacetime of charged nonlinear black hole,” Phys. Rev. D 66, 024022 (2002); gr-qc/0204031.ADSMathSciNetCrossRefGoogle Scholar
  41. 40.
    M. Novello, V. A. de Lorenci, J. M. Salim, and R. Klippert, “Geometrical aspects of light propagation in nonlinear electrodynamics,” Phys. Rev. D 61, 045001 (2000).ADSCrossRefGoogle Scholar
  42. 41.
    M. Novello, S. E. Perez Bergliaffa, and J. M. Salim, “Singularities inGeneral Relativity coupled to nonlinear electrodynamics,” Class.QuantumGrav. 17, 3821 (2000); gr-qc/0003052.ADSCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.VNIIMSMoscowRussia
  2. 2.Institute of Gravitation and CosmologyPeoples’ Friendship University of Russia (RUDN University)MoscowRussia
  3. 3.National Research Nuclear University “MEPhI,”MoscowRussia

Personalised recommendations