Skip to main content
Log in

Dyonic configurations in nonlinear electrodynamics coupled to general relativity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We consider static, spherically symmetric configurations in general relativity, supported by nonlinear electromagnetic fields with gauge-invariant Lagrangians depending on the single invariant f = FμνFμν. After a brief review on black hole (BH) and solitonic solutions, obtained so far with pure electric or magnetic fields, an attempt is made to obtain dyonic solutions, those with both electric and magnetic charges. A general scheme is suggested, leading to solutions in quadratures for an arbitrary Lagrangian function L(f) (up to some monotonicity restrictions); such solutions are expressed in terms of f as a new radial coordinate instead of the usual coordinate r. For the truncated Born-Infeld theory (depending on the invariant f only), a general dyonic solution is obtained in terms of r. A feature of interest in this solution is the existence of a special case with a self-dual electromagnetic field, f ≡ 0 and the Reissner-Nordström metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Born and L. Infeld, “Foundations of the new field theory,” Proc. R. Soc. Lond. 144, 425 (1934).

    Article  ADS  MATH  Google Scholar 

  2. W. Heisenberg and H. Euler, “Folgerungen aus der Diracschen Theorie des Positrons,” Z. Phys. 98, 714 (1936).

    Article  ADS  MATH  Google Scholar 

  3. J. Plebanski, Non-Linear Electrodynamics—A Study (C.I.E.A. del I.P.N., Mexico City, 1966).

    Google Scholar 

  4. K. A. Bronnikov, “Regular magnetic black holes and monopoles from nonlinear electrodynamics,” Phys. Rev. D 63, 044005 (2001); gr-qc/0006014

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Pellicer and R. J. Torrence, “Nonlinear electrodynamics and general relativity,” J. Math. Phys. 10, 1718 (1969).

    Article  ADS  Google Scholar 

  6. K. A. Bronnikov and G. N. Shikin, “On the Reissner-Nordström problem with a nonlinear electromagnetic field,” in Classical and Quantum Theory of Gravity (Trudy IF AN BSSR, Minsk, 1976), p. 88 (in Russian)

    Google Scholar 

  7. A. Bronnikov, V. N. Melnikov, G. N. Shikin, and K. P. Staniukovich, “Scalar, electromagnetic, and gravitational fields interaction: particlelike solutions,” Ann. Phys. (N.Y.) 118, 84 (1979).

    Article  ADS  Google Scholar 

  8. E. Ayon-Beato and A. Garcia, “Regular black hole in general relativity coupled to nonlinear electrodynamics,” Phys. Rev. Lett. 80, 5056 (1998).

    Article  ADS  Google Scholar 

  9. K. A. Bronnikov, “Comment on ‘Regular black hole in general relativity coupled to nonlinear electrodynamics’,” Phys. Rev. Lett. 85, 4641 (2000).

    Article  ADS  Google Scholar 

  10. A. Burinskii and S. R. Hildebrandt, “New type of regular black holes and particlelike solutions from nonlinear electrodynamics,” Phys. Rev. D 65, 104017 (2002); hep-th/0202066.

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Burinskii and S. R. Hildebrandt, “Regular black holes and confinement,” Grav. Cosmol. 9, 20 (2003); Czech. J. Phys. 53, B283 (2003); hep-th/0210276.

    ADS  MATH  Google Scholar 

  12. J. Diaz-Alonso and D. Rubiera-Garcia, “Electrostatic spherically symmetric configurations in gravitating nonlinear electrodynamics,” Phys. Rev. D 81, 064021 (2010); arXiv:0908.3303.

    Article  ADS  Google Scholar 

  13. Remo Ruffini, Yuan-Bin Wu, and She-Sheng Xue, “Einstein-Euler-Heisenberg theory and charged black holes,” Phys. Rev. D 88, 085004 (2013); arXiv: 1307.4951.

    Article  ADS  Google Scholar 

  14. G. O. Schellstede, V. Perlick, and C. Lämmerzahl, “On causality in nonlinear vacuum electrodynamics of the Plebański class,” Ann. Phys. (Berlin) 528, 738 (2016); arXiv: 1604.02545.

    Article  ADS  MATH  Google Scholar 

  15. J. Matyjasek, D. Tryniecki, and M. Klimek, “Regular black holes in an asymptotically de Sitter universe,” Mod. Phys. Lett. A 23, 3377 (2009); arXiv: 0809.2275.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. J. Matyjasek, P. Sadurski, and D. Tryniecki, “Inside the degenerate horizons of regular black holes,” Phys. Rev. D 87, 124025 (2013); arXiv: 1304.6347.

    Article  ADS  Google Scholar 

  17. S. Fernando, “Regular black holes in de Sitter universe: scalar field perturbations and quasinormal modes,” Int. J. Mod. Phys. D 24, 1550104 (2015); arXiv:1508.03581.

    Article  ADS  MathSciNet  Google Scholar 

  18. N. Bretón, “Smarr’s formula for black holes with non-linear electrodynamics,” Gen. Rel. Grav. 37, 643 (2005); gr-qc/0405116.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Yun Soo Myung, Yong-Wan Kim, and Young-Jai Park, “Entropy of an extremal regular black hole,” Phys. Lett. B 659, 832 (2008); arXiv: 0705.2478.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. N. Bretón and S. E. Perez Bergliaffa, “On the stability of black holes with nonlinear electromagnetic fields,” arXiv: 1402.2922

  21. Meng-Sen Ma, “Magnetically charged regular black hole in a model of nonlinear electrodynamics,” Annals of Phys. 362, 529 (2015); arXiv: 1509.05580.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hristu Culetu, “On a regular charged black hole with a nonlinear electric source,” Int. J. Theor. Phys. 54, 2855 (2015); arXiv:1408.3334.

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Balart and F. Peña, “Regular charged black holes, quasilocal energy and energy conditions,” arXiv: 1603.07782.

  24. S. I. Kruglov, “Asymptotic Reissner-Nordström solution within nonlinear electrodynamics,” Phys. Rev. D 94, 044026 (2016); arXiv: 1608.04275.

    Article  ADS  MathSciNet  Google Scholar 

  25. Zhong-Ying Fan and Xiaobao Wang, “Construction of regular black holes in general relativity,” Phys. Rev. D 94, 124027 (2016); arXiv: 1610.02636.

    Article  ADS  Google Scholar 

  26. K. A. Bronnikov, G. N. Shikin, and E. N. Sibileva, “Self-gravitating stringlike configurations from nonlinear electodynamics,” Grav. Cosmol. 9, 169 (2003); gr-qc/0308002.

    ADS  MATH  Google Scholar 

  27. C. Bambi and L. Modesto, “Rotating regular black holes,” Phys. Lett. B 721, 329 (2013); arXiv: 1302.6075.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. I. Dymnikova and E. Galaktionov, “Regular rotating electrically charged black holes and solitons in nonlinear electrodynamics minimally coupled to gravity,” Class. Quantum Grav. 32, 165015 (2015); arXiv: 1510.01353.

    Article  ADS  MATH  Google Scholar 

  29. I. Dymnikova, “Electromagnetic source for the Kerr-Newman geometry,” Int. J. Mod. Phys. D 24, 1550094 (2015); arXiv: 1510.01352.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. A. V. B. Arellano and F. S. N. Lobo, “Evolving wormhole geometries within nonlinear electrodynamics,” Class. Quantum Grav. 23, 5811 (2006); grqc/0608003.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Ch. G. Boehmer, T. Harko, and F. S.N. Lobo, “Conformally symmetric traversable wormholes,” Phys. Rev. D 76, 084014 (2007); arXiv: 0708.1537.

    Article  ADS  MathSciNet  Google Scholar 

  32. A. V. B. Arellano, N. Bretón, and R. Garcia-Salcedo, “Some properties of evolving wormhole geometries within nonlinear electrodynamics,” Gen. Rel. Grav. 41, 2561 (2009); arXiv: 0804.3944.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. C. Moreno and O. Sarbach, “Stability properties of black holes in self-gravitating nonlinear electrodynamics,” Phys. Rev. D 67, 024028 (2003); grqc/0208090.

    Article  ADS  MathSciNet  Google Scholar 

  34. I. Dymnikova and E. Galaktionov, “Stability of a vacuum nonsingular black hole,” Class. Quantum Grav. 22, 2331 (2005); gr-qc/0409049.

    Article  ADS  MATH  Google Scholar 

  35. N. Bretón, “Stability of nonlinear magnetic black holes,” Phys. Rev. D 72, 044015 (2005); hepth/0502217.

    Article  ADS  Google Scholar 

  36. Jin Li, Hong Ma, and Kai Lin, “Dirac quasinormal modes in spherically symmetric regular black holes,” Phys. Rev. D 88, 064001 (2013); arXiv: 1308.6499.

    Article  ADS  Google Scholar 

  37. Jin Li, Kai Lin, and Nan Yang, “Nonlinear electromagnetic quasinormal modes and Hawking radiation of a regular black hole with magnetic charge,” Eur. Phys. J. C 75, 131 (2015); arXiv: 1409.5988.

    Article  ADS  Google Scholar 

  38. A. Flachi and J. P. S. Lemos, “Quasinormal modes of regular black holes,” Phys. Rev. D 87, 024034 (2013); arXiv: 1211.6212.

    Article  ADS  Google Scholar 

  39. B. Toshmatov, A. Abdujabbarov, Z. Stuchlík, and B. Ahmedov, “Quasinormal modes of test fields around regular black holes,” Phys. Rev. D 91, 083008 (2015); arXiv: 1503.05737.

    Article  ADS  Google Scholar 

  40. W. Berej and J. Matyjasek, “Vacuum polarization in the spacetime of charged nonlinear black hole,” Phys. Rev. D 66, 024022 (2002); gr-qc/0204031.

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Novello, V. A. de Lorenci, J. M. Salim, and R. Klippert, “Geometrical aspects of light propagation in nonlinear electrodynamics,” Phys. Rev. D 61, 045001 (2000).

    Article  ADS  Google Scholar 

  42. M. Novello, S. E. Perez Bergliaffa, and J. M. Salim, “Singularities inGeneral Relativity coupled to nonlinear electrodynamics,” Class.QuantumGrav. 17, 3821 (2000); gr-qc/0003052.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Bronnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bronnikov, K.A. Dyonic configurations in nonlinear electrodynamics coupled to general relativity. Gravit. Cosmol. 23, 343–348 (2017). https://doi.org/10.1134/S0202289317040053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289317040053

Navigation