Gravitation and Cosmology

, Volume 23, Issue 4, pp 349–358 | Cite as

Membrane solutions to Hořava gravity

Article
  • 9 Downloads

Abstract

We have investigated purely gravitational membrane solutions to the Hořava nonrelativistic theory of gravity with detailed balance in 3 + 1 dimensions. We find that for arbitrary values of the running parameter λ > 1/3 there exist two branches of membrane solutions, and that in the special case λ = 1 one of them is degenerate, the lapse function being undetermined. For negative values of the cosmological constant, the solution contains a single membrane sitting at the center of space, which extends infinitely in the transverse direction, approaching a Lifshitz metric. For positive values of the cosmological constant, the solution represents a space that is bounded in the transverse direction, with two parallelmembrane-like or point-like singularities sitting at each of the boundaries.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Horava, “Quantum Gravity at a Lifshitz Point,” Phys. Rev. D 79, 084008 (2009); arXiv: 0901.3775.ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    G. Calcagni, “Detailed balance in Horava–Lifshitz gravity,” Phys. Rev. D 81, 044006 (2010); arXiv: 0905.3740.ADSCrossRefGoogle Scholar
  3. 3.
    M. Li and Y. Pang, “A trouble with Hořava-Lifshitz gravity,” JHEP 0908, 015 (2009); arXiv: 0905.2751.ADSGoogle Scholar
  4. 4.
    D. Orlando and S. Reffert, “On the renormalizability of Horava–Lifshitz-type gravities,” Class. Quant. Grav. 26, 155021 (2009); arXiv: 0905.0301.ADSCrossRefMATHGoogle Scholar
  5. 5.
    S. Dutta and E. N. Saridakis, “Observational constraints on Horava–Lifshitz cosmology,” JCAP 1001, 013 (2010); arXiv: 0911.1435.ADSGoogle Scholar
  6. 6.
    S. Dutta and E. N. Saridakis, “Overall observational constraints on the running parameter λ of Horava–Lifshitz gravity,” JCAP 1005, 013 (2010); arXiv: 1002.3373.ADSGoogle Scholar
  7. 7.
    M. Visser, “Lorentz symmetry breaking as a quantum field theory regulator,” Phys. Rev. D 80, 025011 (2009); arXiv: 0902.0590.ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    T. P. Sotiriou, M. Visser, and S. Weinfurtner, “Phenomenologically viable Lorentz-violating quantum gravity,” Phys. Rev. Lett. 102, 251601 (2009); arXiv: 0904.4464.ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    T. P. Sotiriou, M. Visser, and S. Weinfurtner, “Quantum gravity without Lorentz invariance,” JHEP 0910, 033 (2009); arXiv: 0905.2798.ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    H. Lu, J. Mei, and C. N. Pope, “Solutions to Horava gravity,” Phys. Rev. Lett. 103, 091301 (2009); arXiv: 0904.1595.ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Kehagias and K. Sfetsos, “The black hole and FRW geometries of non-relativistic gravity,” Phys. Lett. B 678, 123 (2009); arXiv: 0905.0477.ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    R.G. Cai, L.M. Cao, and N. Ohta, “Topological black holes in Horava–Lifshitz gravity,” Phys. Rev. D 80, 024003 (2009); arXiv: 0904.3670.ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    R. G. Cai, Y. Liu, and Y. W. Sun, “On the z = 4 Horava–Lifshitz gravity,” JHEP 0906, 010 (2009); arXiv: 0904.4104.ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M. i. Park, “The black hole and cosmological solutions in IRmodified Horava gravity,” JHEP 0909, 123 (2009); arXiv: 0905.4480.ADSCrossRefGoogle Scholar
  15. 15.
    M. Botta-Cantcheff, N. Grandi, and M. Sturla, “Wormhole solutions to Horava gravity,” Phys. Rev. D 82, 124034 (2010); arXiv: 0906.0582.ADSCrossRefGoogle Scholar
  16. 16.
    E. O. Colgain and H. Yavartanoo, “Dyonic solution of Horava–Lifshitz gravity,” JHEP 0908, 021 (2009); arXiv: 0904.4357.ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Ghodsi and E. Hatefi, “Extremal rotating solutions in Horava gravity,” Phys. Rev. D 81 (2010) 044016; arXiv: 0906.1237.ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    I. Cho and G. Kang, “Four dimensional string solutions in Hořava-Lifshitz gravity,” JHEP 1007, 034 (2010); arXiv: 0909.3065.ADSCrossRefMATHGoogle Scholar
  19. 19.
    T. Kim and Y. Kim, “Constraints on flows in Horava–Lifshitz gravity by classical solutions,” Phys. Rev. D 82, 104034 (2010); arXiv: 1009.1211.ADSCrossRefGoogle Scholar
  20. 20.
    A. Ghodsi, “Toroidal solutions inHorava gravity,” Int. J.Mod. Phys. A 26, 925 (2011); arXiv: 0905.0836.ADSCrossRefMATHGoogle Scholar
  21. 21.
    H. Nastase, “On IR solutions in Horava gravity theories,” arXiv: 0904.3604.Google Scholar
  22. 22.
    T. Takahashi and J. Soda, “Chiral primordial gravitational waves from a Lifshitz point,” Phys. Rev. Lett. 102, 231301 (2009); arXiv: 0904.0554.ADSCrossRefGoogle Scholar
  23. 23.
    G. Calcagni, “Cosmology of the Lifshitz universe,” JHEP 0909, 112 (2009); arXiv: 0904.0829.ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    E. Kiritsis and G. Kofinas, “Horava–Lifshitz Cosmology,” Nucl. Phys. B 821, 467 (2009); arXiv: 0904.1334.ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    R. Brandenberger, “Matter Bounce in Horava–Lifshitz Cosmology,” Phys. Rev. D 80, 043516 (2009); arXiv: 0904.2835.ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Mukohyama, “Scale-invariant cosmological perturbations from Horava–Lifshitz gravity without inflation,” JCAP 0906, 001 (2009); arXiv: 0904.2190.ADSCrossRefGoogle Scholar
  27. 27.
    Y. S. Piao, “Primordial Perturbation in Horava–Lifshitz Cosmology,” Phys. Lett. B 681, 1 (2009); arXiv: 0904.4117.ADSCrossRefGoogle Scholar
  28. 28.
    E. N. Saridakis, “Horava–Lifshitz Dark Energy,” Eur. Phys. J. C 67, 229 (2010); arXiv: 0905.3532.ADSCrossRefGoogle Scholar
  29. 29.
    A. Wang and Y. Wu, “Thermodynamics and classification of cosmological models in the Horava–Lifshitz theory of gravity,” JCAP 0907, 012 (2009); arXiv: 0905.4117.ADSCrossRefGoogle Scholar
  30. 30.
    Y. F. Cai and E. N. Saridakis, “Non-singular cosmology in a model of non-relativistic gravity,” JCAP 0910 (2009) 020; arXiv: 0906.1789.ADSCrossRefGoogle Scholar
  31. 31.
    G. Leon and E. N. Saridakis, “Phase-space analysis of Horava–Lifshitz cosmology,” JCAP 0911, 006 (2009); arXiv: 0909.3571.ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Jamil and E. N. Saridakis, “New agegraphic dark energy in Horava–Lifshitz cosmology,” JCAP 1007, 028 (2010); arXiv: 1003.5637.ADSCrossRefGoogle Scholar
  33. 33.
    M. Jamil, E. N. Saridakis, and M. R. Setare, “The generalized second law of thermodynamics in Horava–Lifshitz cosmology,” JCAP 1011, 032 (2010); arXiv: 1003.0876.ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    A. Ali, S. Dutta, E. N. Saridakis, and A. A. Sen, “Horava–Lifshitz cosmology with generalized Chaplygin gas,” Gen. Rel. Grav. 44, 657 (2012); arXiv: 1004.2474.ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    X. Gao, “Cosmological perturbations and nongaussianities in Hořava-Lifshitz gravity,” arXiv: 0904.4187.Google Scholar
  36. 36.
    Y. S. Myung and Y. W. Kim, “Thermodynamics of Hořava-Lifshitz black holes,” Eur. Phys. J. C 68, 265 (2010); arXiv: 0905.0179.ADSCrossRefGoogle Scholar
  37. 37.
    R. G. Cai, L. M. Cao, and N. Ohta, “Thermodynamics of Black Holes in Horava–Lifshitz Gravity,” Phys. Lett. B 679, 504 (2009); arXiv: 0905.0751.ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Y. S. Myung, “Thermodynamics of black holes in the deformedHořava-Lifshitz gravity,” Phys. Lett. B 678, 127 (2009); arXiv: 0905.0957.ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    H. Nikolic, “Horava–Lifshitz gravity, absolute time, and objective particles in curved space,” Mod. Phys. Lett. A 25, 1595 (2010); arXiv: 0904.3412.ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    B. R. Majhi, “Hawking radiation and black hole spectroscopy in Horava–Lifshitz gravity,” Phys. Lett. B 686, 49 (2010); arXiv: 0911.3239.ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    R. A. Konoplya, “Towards constraining of the Horava–Lifshitz gravities,” Phys. Lett. B 679, 499 (2009); arXiv: 0905.1523.ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    B. Chen and Q. G. Huang, “Field Theory at a Lifshitz Point,” Phys. Lett. B 683, 108 (2010); arXiv: 0904.4565.ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    D. Blas, O. Pujolas, and S. Sibiryakov, “On the Extra Mode and Inconsistency of Horava Gravity,” JHEP 0910, 029 (2009); arXiv: 0906.3046.ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    C. Charmousis, G. Niz, A. Padilla, and P. M. Saffin, “Strong coupling in Horava gravity,” JHEP 0908, 070 (2009); arXiv: 0905.2579.ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    A. Kobakhidze, “On the infrared limit of Horava’s gravity with the global Hamiltonian constraint,” Phys. Rev. D 82, 064011 (2010); arXiv: 0906.5401.ADSCrossRefGoogle Scholar
  46. 46.
    C. Bogdanos and E. N. Saridakis, “Perturbative instabilities in Horava gravity,” Class. Quant. Grav. 27, 075005 (2010); arXiv: 0907.1636.ADSCrossRefMATHGoogle Scholar
  47. 47.
    D. Blas, O. Pujolas, and S. Sibiryakov, “Consistent extension of Horava gravity,” Phys. Rev. Lett. 104, 181302 (2010); arXiv: 0909.3525.ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    C. Germani, A. Kehagias, and K. Sfetsos, “Relativistic quantum gravity at a Lifshitz point,” JHEP 0909, 060 (2009); arXiv: 0906.1201.ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    J. Bellorin and A. Restuccia, “On the consistency of the Horava theory,” Int. J. Mod. Phys. D 21, 1250029 (2012); arXiv: 1004.0055.ADSMathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    P. Horava and C. M. Melby-Thompson, “General covariance in quantum gravity at a Lifshitz point,” Phys. Rev. D 82, 064027 (2010); arXiv: 1007.2410.ADSCrossRefGoogle Scholar
  51. 51.
    K. Skenderis, and P. K. Townsend, “Pseudo-supersymmetry and the domain-wall /cosmology correspondence,” J. Phys. A 40, 6733 (2007); arXiv: hep-th/0610253.ADSMathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    S. Kachru, X. Liu, and M. Mulligan, “Gravity duals of Lifshitz-like fixed points,” Phys. Rev. D 78, 106005 (2008); arXiv: 0808.1725.ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Departamento de Física—UNLP, cc67La PlataArgentina
  2. 2.IFLP—CONICET and Departamento de Física—UNLP, cc67La PlataArgentina

Personalised recommendations