Plastic Pollution of the Coastal Surface Water in the Middle and Southern Baikal

Abstract

For the first time, the concentration of plastic particles in surface water of Lake Baikal was evaluated. The concentrations of plastic particles were evaluated in trawl samples taken in the coastal zone of the most densely populated southeastern coast and in the Maloe More―one of the most popular tourist zones in Baikal. Converted to water surface area, the concentration of plastic particles varied from 19 000 to 75 000 per 1 km2, at an average of 42 000 particles per 1 km2, suggesting a high level of plastic pollution. By their chemistry, the particles were classified as polyethylene, polypropylene, and polystyrene. The microplastic found in the study is assumed to be the product of decay of various domestic packing materials.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Blinovskaya, Ya.Yu. and Yakimenko, A.L., Analysis of microplastic pollution of Peter the Great Bay (the Sea of Japan), Usp. Sovrem. Estestvozn., 2018, no. 1, pp. 68–73.

  2. 2

    Votintsev, K.K., Chemical balance of Lake Baikal and some aspects of forecasting its potential changes, Geogr. Prir. Res., 1982, no. 3, pp. 50–55.

  3. 3

    Grachev, M.A., O sovremennom sostoyanii ekologicheskoi sistemy ozera Baikal (The Present-Day State of Lake Baikal Ecosystem), Novosibirsk: Izd. Sib. Otd. Ross. Akad. Nauk, 2002.

  4. 4

    Zilov, E.A., The current state of the anthropogenic impact on Lake Baikal, Zhurn. Sib Fed. Univ,, 2013, no. 6, pp. 388–404.

  5. 5

    Infrakrasnaya spektroskopiya polimerov (Infrared Spectroscopy of Polymers), Dekhant, I., Ed., Moscow: Khimiya, 1976.

    Google Scholar 

  6. 6

    Federal'nyi zakon ot 01.05.1999 № 94-FZ “Ob okhrane ozera Baikal” (Federal Law of May 1, 1999, no. 94-FZ On the Protection of Lake Baikal).

  7. 7

    Andrady, A.A., Persistence of plastic litter in the oceans, Marine Anthropogenic Litter, Bergmann, M., Gutow, L., and Klages, M., Eds., Bremerhaven: Springer, 2015, pp. 57–72.

    Google Scholar 

  8. 8

    Arthur, C., Baker, J., and Bamford, H., in Proc. Int. Res. Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris, NOAA Technical Memorandum NOS-OR & R-30. NOAA Silver Spring, 2008. https://pdfs.semanticscholar.org/e80d/0f228133223-e7d0c76266d3510d69bfdd755.pdf.

  9. 9

    Barnes, D.K.A., Galgani, F., Thompson, R.C., and Barlaz, M., Accumulation and fragmentation of plastic debris in global environments, Philos. Trans. Royal Soc., 2009, vol. 364, pp. 1985–1998.

    Article  Google Scholar 

  10. 10

    Browne, M.A., Niven, S.J., Galloway, T.S., Rowland, S.J., and Thompson R.C., Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity, Curr. Biol., 2013, vol. 23, pp. 2388–2392.

    Article  Google Scholar 

  11. 11

    Browne, M.A., Sources and pathways of microplastics to habitats, Marine Anthropogenic Litter, Berg-mann, M., Gutow, L., and Klages, M., Eds., Bremerhaven: Springer, 2015, pp. 229–244.

    Google Scholar 

  12. 12

    Cózar, A., Martí, E., Duarte, C.M., García-de-Lomas, J., van Sebille, E., Ballatore, T.J., Eguíluz, V.M., González-Gordillo, I.J., Ped-rotti, M.L., Echevarría, F., Troublè, R., and Irigoien, X., The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation, Sci. Adv., 2017, vol. 3, pp. 1–8.

    Article  Google Scholar 

  13. 13

    Eriksen, M., Lebreton, L.C.M., Carson, H.S., Thiel, M., Moore, C.J., Borerro, J.S., Galgani, F., Ryan, P.G., and Reisser, J., Plastic pollution in the World’s Oceans: more than 5 trillion plastic pieces weighing over 250 000 tons afloat at sea, PLoS ONE, 2014, vol. 9, no. 12, pp. 1–15.

    Google Scholar 

  14. 14

    Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley, H., and Amato, S., Microplastic pollution in the surface waters of the Laurentian Great Lakes, Mar. Pollut. Bull., 2013, vol. 77, nos. 1, 2, pp. 177–182.

  15. 15

    Farrell, P. and Nelson, K., Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.), Env. Pollut., 2013, vol. 177, pp. 1–3.

    Article  Google Scholar 

  16. 16

    Free, C.M., Jensen, O.P., Mason, S.A., Eriksen, M., Williamson, N.J., and Boldgiv, B., High-levels of microplastic pollution in a large, remote, mountain lake, Mar. Pollut. Bull., 2014, vol. 85, no. 1, pp. 156–163.

    Article  Google Scholar 

  17. 17

    Galgani, F., Leaute, J, P., Moguedet, P., Souplet, A., Verin, Y., Carpentier, A., et al., Litter on the sea floor along European coasts, Mar. Pollut. Bull., 2000, vol. 40, pp. 516–527.

    Article  Google Scholar 

  18. 18

    Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., and Thiel, M., Microplastics in the marine environment: a review of the methods used for identification and quantification, Environ. Sci. Technol., 2012, vol. 46, pp. 3060–3075.

    Article  Google Scholar 

  19. 19

    Holmström, A., Plastic films on the bottom of the Skagerrak, Nature, 1975, vol. 255, pp. 622–623.

    Article  Google Scholar 

  20. 20

    Jeong, C.-B., Kang, H.M., Lee, Y.H., Kim, M.-S., Lee, J.-S., Seo, J.S., Wang, M., and Lee, J.-S., Nanoplastic ingestion enhances toxicity of persistent organic pollutants (POPs) in the Monogonont Rotifer Brachionus koreanus via multixenobiotic resistance (MXR) disruption, Environ. Sci. Technol., 2018, vol. 52, pp. 11 411–11 418.

  21. 21

    Koelmans, A.A., Besseling, E., and Shim, W.J., Nanoplastics in the aquatic environment. Critical review, Marine Anthropogenic Litter, Bergmann, M., Gutow, L., and Klages, M., Eds., Bremerhaven: Springer, 2015, pp. 325–340.

    Google Scholar 

  22. 22

    Lebreton, L., Egger, M., and Slat, B., A global mass budget for positively buoyant macroplastic debris in the ocean, Sci. Rep., 2019, vol. 9. 12922. chttps://elibrary.ru/title_about.asp?id=33781

  23. 23

    Lusher, A., Microplastics in the marine environment: distribution, interactions and effects, Marine Anthropogenic Litter, Bergmann, M., Gutow, L., and Klages, M., Bremerhaven: Springer, 2015, pp. 245–308.

    Google Scholar 

  24. 24

    Masura, J., Baker, J., Foster, G., and Arthur, C., Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in watersand sediments, NOAA Tech. Memorandum NOS-OR&R-48. 2015.

  25. 25

    Moore, C.J., Moore, S.L., Leecaster, M.K., and Weisberg, S.B., A comparison of plastic and plankton in the North Pacific central gyre, Mar. Pollut. Bull., 2001, vol. 42, pp. 1297–1300.

    Article  Google Scholar 

  26. 26

    Morét-Ferguson, S., Lavender Law, K., Proskurowski, G., Murphy, E.K., Peacock, E.E., and Reddy, C.M., The size, mass, and composition of plastic debris in the western North Atlantic Ocean, Mar. Pollut. Bull., 2010, vol. 60, pp. 1873–1878.

    Article  Google Scholar 

  27. 27

    Rochman, C.M., The complex mixture, fate and toxicity of chemicals associated with plastic debris in the marine environment, Marine Anthropogenic Litter, Bergmann, M., Gutow, L., and Klages, M., Bremerhaven: Springer, 2015, pp. 117–140.

    Google Scholar 

  28. 28

    Sjollema, S.B., Redondo-Hasselerharm, P., Leslie, H.A., Kraak, M.H., Vethaak, A.D., Do plastic particles affect microalgal photosynthesis and growth?, Aquat. Toxicol., 2016, vol. 170, pp. 259–261.

    Article  Google Scholar 

  29. 29

    Socrates, G., Infrared and Raman Characteristic Group Frequencies. Tables and Charts, Chichester: Wiley, 2001.

    Google Scholar 

  30. 30

    Timoshkin, O.A., Samsonov, D.P., Yamamuro, M., Kupchinsky, A.B., and Bukshuk, N.A., Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world’s greatest freshwater biodiversity in danger?, J. Great Lakes Res., 2016, vol. 42, pp. 487–497.

    Article  Google Scholar 

  31. 31

    Zhang, C., Chen, X., Wang, J., and Tan, L. Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae, Env. Pollut., 2017, vol. 220, pp. 1282–1288.

    Article  Google Scholar 

  32. 32

    Zobkov, M.B. and Esiukova, E.E., Microplastics in Baltic bottom sediments: quantification procedures and first results, Mar. Pollut. Bull., 2017, vol. 114, pp. 724–732.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENS

The authors are grateful to colleagues from ANO Baikal Interactive Ecological Center, Irkutsk, and personally M.P. Rikhvanova for their help in the implementation of this study.

Funding

This study was carried out under the Development Program of Moscow State University up to 2020, the priority direction “Rational Nature Development and Sustainable Development of Russian Regions.” The study was also supported by the Global Greengrants Fund, project no. 60-184.

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. V. Il’ina.

Additional information

Translated by G. Krichevets

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Il’ina, O.V., Kolobov, M.Y. & Il’inskii, V.V. Plastic Pollution of the Coastal Surface Water in the Middle and Southern Baikal. Water Resour 48, 56–64 (2021). https://doi.org/10.1134/S0097807821010188

Download citation

Keywords:

  • freshwater ecosystems
  • plastic pollution
  • qualitative analysis
  • microplastic
  • Lake Baikal