Skip to main content
Log in

Integrable 3D Statistical Models on Six-Valent Graphs

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The paper is devoted to the study of a special statistical model on graphs with vertices of degrees 6 and 1. We show that this model is invariant with respect to certain Roseman moves if one regards the graph as the singular point set of the diagram of a 2-knot. Our approach is based on the properties of the tetrahedron cohomology complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Aschieri, L. Cantini, and B. Jurčo, “Nonabelian bundle gerbes, their differential geometry and gauge theory,” Commun. Math. Phys. 254 (2), 367–400 (2005); arxiv: hep-th/0312154.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Baez and U. Schreiber, “Higher gauge theory: 2-connections on 2-bundles,” arXiv: hep-th/0412325.

  3. J. S. Carter, M. Elhamdadi, and M. Saito, “Homology theory for the set-theoretic Yang–Baxter equation and knot invariants from generalizations of quandles,” Fundam. Math. 184, 31–54 (2004); arXiv:math/0206255 [math.GT].

    Article  MathSciNet  MATH  Google Scholar 

  4. J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito, “Quandle cohomology and state-sum invariants of knotted curves and surfaces,” Trans. Am. Math. Soc. 355 (10), 3947–3989 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. S. Cattaneo, P. Cotta-Ramusino, J. Fröhlich, and M. Martellini, “Topological BF theories in 3 and 4 dimensions,” J. Math. Phys. 36 (11), 6137–6160 (1995); arXiv: hep-th/9505027.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci. USA 79 (8), 2554–2558 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. G. Korepanov, “Geometric torsions and an Atiyah-style topological field theory,” Theor. Math. Phys. 158 (3), 344–354 (2009) [transl. from Teor. Mat. Fiz. 158 (3), 405–418 (2009)].

    Article  MathSciNet  MATH  Google Scholar 

  8. I. G. Korepanov, G. I. Sharygin, and D. V. Talalaev, “Cohomologies of n-simplex relations,” Math. Proc. Cambridge Philos. Soc. 161 (2), 203–222 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  9. W. A. Little, “The existence of persistent states in the brain,” Math. Biosci. 19, 101–120 (1974).

    Article  MATH  Google Scholar 

  10. S. V. Matveev, “Distributive groupoids in knot theory,” Math. USSR, Sb. 47 (1), 73–83 (1984) [transl. from Mat. Sb. 119 (1), 78–88 (1982)].

    Article  MATH  Google Scholar 

  11. P. Mnëv, “Notes on simplicial BF theory,” Moscow Math. J. 9 (2), 371–410 (2009).

    MathSciNet  MATH  Google Scholar 

  12. D. Roseman, “Reidemeister-type moves for surfaces in four-dimensional space,” in Knot Theory (Pol. Acad. Sci., Inst. Math., Warszawa, 1998), Banach Cent. Publ. 42, pp. 347–380.

    Google Scholar 

  13. D. V. Talalaev, “Zamolodchikov tetrahedral equation and higher Hamiltonians of 2d quantum integrable systems,” SIGMA, Symmetry Integrability Geom. Methods Appl. 13, 031 (2017).

    Google Scholar 

  14. E. Witten, “Quantum field theory and the Jones polynomial,” Commun. Math. Phys. 121 (3), 351–399 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. B. Zamolodchikov, “Tetrahedra equations and integrable systems in three-dimensional space,” Sov. Phys. JETP 52 (2), 325–336 (1980) [transl. from Zh. Eksp. Teor. Fiz. 79 (2), 641–664 (1980)].

    MathSciNet  Google Scholar 

  16. E. C. Zeeman, “Twisting spun knots,” Trans. Am. Math. Soc. 115, 471–495 (1965).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Korepanov.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Vol. 302, pp. 214–233.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korepanov, I.G., Talalaev, D.V. & Sharygin, G.I. Integrable 3D Statistical Models on Six-Valent Graphs. Proc. Steklov Inst. Math. 302, 198–216 (2018). https://doi.org/10.1134/S008154381806010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S008154381806010X

Navigation