Skip to main content
Log in

Bounded Discrete Holomorphic Functions on the Hyperbolic Plane

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

To S. P. Novikov on the occasion of his 80th birthday

Abstract

It is shown that, for the discretization of complex analysis introduced earlier by S. P. Novikov and the present author, there exists a rich family of bounded discrete holomorphic functions on the hyperbolic (Lobachevsky) plane endowed with a triangulation by regular triangles whose vertices have even valence. Namely, it is shown that every discrete holomorphic function defined in a bounded convex domain can be extended to a bounded discrete holomorphic function on the whole hyperbolic plane so that the Dirichlet energy be finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Benjamini and O. Schramm, “Random walks and harmonic functions on infinite planar graphs using square tilings,” Ann. Probab. 24 (3), 1219–1238 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Bobenko and M. Skopenkov, “Discrete Riemann surfaces: linear discretization and its convergence,” J. Reine Angew. Math. 720, 217–250 (2016).

    MathSciNet  MATH  Google Scholar 

  3. D. Chelkak and S. Smirnov, “Discrete complex analysis on isoradial graphs,” Adv. Math. 228 (3), 1590–1630 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. J. Duffin, “Basic properties of discrete analytic functions,” Duke Math. J. 23, 335–363 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  5. R. J. Duffin, “Potential theory on a rhombic lattice,” J. Comb. Theory 5, 258–272 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  6. I. A. Dynnikov, “On a new discretization of complex analysis,” Russ. Math. Surv. 70 (6), 1031–1050 (2015) [transl. from Usp. Mat. Nauk 70 (6), 63–84 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  7. I. A. Dynnikov and S. P. Novikov, “Geometry of the triangle equation on two-manifolds,” Moscow Math. J. 3 (2), 419–438 (2003).

    MathSciNet  MATH  Google Scholar 

  8. D. V. Egorov, “The Riemann–Roch theorem for the Dynnikov–Novikov discrete complex analysis,” Sib. Math. J. 58 (1), 78–79 (2017) [transl. from Sib. Mat. Zh. 58 (1), 104–106 (2017)].

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Ferrand, “Fonctions préharmoniques et fonctions préholomorphes,” Bull. Sci. Math., Sér. 2, 68, 152–180 (1944).

    MATH  Google Scholar 

  10. P. G. Grinevich and R. G. Novikov, “The Cauchy kernel for the Novikov–Dynnikov DN-discrete complex analysis in triangular lattices,” Russ. Math. Surv. 62 (4), 799–801 (2007) [transl. from Usp. Mat. Nauk 62 (4), 155–156 (2007)].

    Article  MATH  Google Scholar 

  11. R. P. Isaacs, “A finite difference function theory,” Rev., Univ. Nac. Tucumán, Ser. A 2, 177–201 (1941).

    MathSciNet  MATH  Google Scholar 

  12. C. Mercat, “Discrete Riemann surfaces and the Ising model,” Commun. Math. Phys. 218 (1), 177–216 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. P. Novikov, “New discretization of complex analysis: the Euclidean and hyperbolic planes,” Proc. Steklov Inst. Math. 273, 238–251 (2011) [repr. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 273, 257–270 (2011)].

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Dynnikov.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Vol. 302, pp. 202–213.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dynnikov, I.A. Bounded Discrete Holomorphic Functions on the Hyperbolic Plane. Proc. Steklov Inst. Math. 302, 186–197 (2018). https://doi.org/10.1134/S0081543818060093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543818060093

Navigation