Skip to main content
Log in

Dehn Invariant and Scissors Congruence of Flexible Polyhedra

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We prove that the Dehn invariant of any flexible polyhedron in n-dimensional Euclidean space, where n ≥ 3, is constant during the flexion. For n = 3 and 4 this implies that any flexible polyhedron remains scissors congruent to itself during the flexion. This proves the Strong Bellows Conjecture posed by R. Connelly in 1979. It was believed that this conjecture was disproved by V. Alexandrov and R. Connelly in 2009. However, we find an error in their counterexample. Further, we show that the Dehn invariant of a flexible polyhedron in the n-dimensional sphere or n-dimensional Lobachevsky space, where n ≥ 3, is constant during the flexion whenever this polyhedron satisfies the usual Bellows Conjecture, i.e., whenever its volume is constant during every flexion of it. Using previous results of the first named author, we deduce that the Dehn invariant is constant during the flexion for every bounded flexible polyhedron in odd-dimensional Lobachevsky space and for every flexible polyhedron with sufficiently small edge lengths in any space of constant curvature of dimension at least 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Alexandrov, “An example of a flexible polyhedron with nonconstant volume in the spherical space,” Beitr. Algebra Geom. 38 (1), 11–18 (1997).

    MathSciNet  MATH  Google Scholar 

  2. V. Alexandrov, “The Dehn invariants of the Bricard octahedra,” J. Geom. 99 (1–2), 1–13 (2010); arXiv: 0901.2989 [math.MG].

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Alexandrov and R. Connelly, “Flexible suspensions with a hexagonal equator,” Ill. J. Math. 55 (1), 127–155 (2011); arXiv: 0905.3683 [math.MG].

    Article  MathSciNet  MATH  Google Scholar 

  4. V. G. Boltianskii, Hilbert’s Third Problem (Nauka, Moscow, 1977; V. H. Winston & Sons, Washington, D.C., 1978), Scripta Ser. Math.

    Google Scholar 

  5. R. Bricard, “Mémoire sur la théorie de l’octaèdre articulé,” J. Math. Pures Appl., Sér. 5, 5 (3), 113–148 (1897).

    MATH  Google Scholar 

  6. R. Connelly, “An attack on rigidity. I, II,” Preprint (Cornell Univ., New York, 1974), http://www.math.cornell.edu/~connelly/Attack.I.pdf, http://www.math.cornell.edu/~connelly/Attack.II.pdf.

    Google Scholar 

  7. R. Connelly, “An attack on rigidity. I, II,” Bull. Am. Math. Soc. 81, 566–569 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Connelly, “A counterexample to the rigidity conjecture for polyhedra,” Publ. Math., Inst. Hautes Étud. Sci. 47, 333–338 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Connelly, “Conjectures and open questions in rigidity,” in Proc. Int. Congr. Math., Helsinki, 1978 (Acad. Sci. Fennica, Helsinki, 1980), Vol. 1, pp. 407–414.

    Google Scholar 

  10. R. Connelly, “The rigidity of polyhedral surfaces,” Math. Mag. 52 (5), 275–283 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Connelly, I. Sabitov, and A. Walz, “The bellows conjecture,” Beitr. Algebra Geom. 38 (1), 1–10 (1997).

    MathSciNet  MATH  Google Scholar 

  12. M. Dehn, “Ueber den Rauminhalt,” Math Ann. 55 (3), 465–478 (1901).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. L. Dupont, Scissors Congruences, Group Homology and Characteristic Classes (World Scientific, Singapore, 2001), Nankai Tracts Math. 1.

    Book  MATH  Google Scholar 

  14. A. A. Gaifullin, “Sabitov polynomials for volumes of polyhedra in four dimensions,” Adv. Math. 252, 586–611 (2014); arXiv: 1108.6014 [math.MG].

    Article  MathSciNet  MATH  Google Scholar 

  15. A. A. Gaifullin, “Generalization of Sabitov’s theorem to polyhedra of arbitrary dimensions,” Discrete Comput. Geom. 52 (2), 195–220 (2014); arXiv: 1210.5408 [math.MG].

    Article  MathSciNet  MATH  Google Scholar 

  16. A. A. Gaifullin, “Flexible cross-polytopes in spaces of constant curvature,” Proc. Steklov Inst. Math. 286, 77–113 (2014) [transl. from Tr. Mat. Inst. im. V.A. Steklova 286, 88–128 (2014)].

    Article  MathSciNet  MATH  Google Scholar 

  17. A. A. Gaifullin, “Embedded flexible spherical cross-polytopes with nonconstant volumes,” Proc. Steklov Inst. Math. 288, 56–80 (2015) [transl. from Tr. Mat. Inst. im. V.A. Steklova288, 67–94 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  18. A. A. Gaifullin, “The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces,” Sb. Math. 206 (11), 1564–1609 (2015) [transl. from Mat. Sb. 206 (11), 61–112 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  19. A. A. Gaifullin, “The bellows conjecture for small flexible polyhedra in non-Euclidean spaces,” Moscow Math. J. 17 (2), 269–290 (2017); arXiv: 1605.04568 [math.MG].

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Hadwiger, “Ergänzungsgleichheit k-dimensionaler Polyeder,” Math. Z. 55 (3), 292–298 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Hadwiger, “Zum Problem der Zerlegungsgleichheit k-dimensionaler Polyeder,” Math. Ann. 127, 170–174 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Jessen, “The algebra of polyhedra and the Dehn–Sydler theorem,” Math. Scand. 22 (2), 241–256 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  23. N. H. Kuiper, “Sphères polyédriques flexibles dans E3, d’après Robert Connelly,” in Séminaire Bourbaki 1977/78 (Springer, Berlin, 1979), Exp. 514, Lect. Notes Math. 710, pp. 147–168.

    Google Scholar 

  24. I. Kh. Sabitov, “The volume of a polyhedron as a function of its metric,” Fundam. Prikl. Mat. 2 (4), 1235–1246 (1996).

    MathSciNet  MATH  Google Scholar 

  25. I. Kh. Sabitov, “A generalized Heron–Tartaglia formula and some of its consequences,” Sb. Math. 189 (10), 1533–1561 (1998) [transl. from Mat. Sb. 189 (10), 105–134 (1998)].

    Article  MathSciNet  MATH  Google Scholar 

  26. I. Kh. Sabitov, “The volume as a metric invariant of polyhedra,” Discrete Comput. Geom. 20 (4), 405–425 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  27. C.-H. Sah, Hilbert’s Third Problem: Scissors Congruence (Pitman Adv. Publ. Program, San Francisco, 1979), Res. Notes Math. 33.

    MATH  Google Scholar 

  28. H. Seifert and W. Threlfall, A Textbook of Topology (Academic, New York, 1980), Pure Appl. Math. 89.

    MATH  Google Scholar 

  29. J.-P. Sydler, “Sur la décomposition des polyèdres,” Comment. Math. Helv. 16, 266–273 (1943).

    Article  MathSciNet  MATH  Google Scholar 

  30. J.-P. Sydler, “Conditions nécessaires et suffisantes pour l’équivalence des polyèdres de l’espace euclidien `a trois dimensions,” Comment. Math. Helv. 40, 43–80 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Whitney, “Elementary structure of real algebraic varieties,” Ann. Math., Ser. 2, 66 (3), 545–556 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  32. V. B. Zylev, “Equicomposability of equicomplementable polyhedra,” Sov. Math., Dokl. 6, 453–455 (1965) [transl. from Dokl. Akad. Nauk SSSR 161 (3), 515–516 (1965)].

    MATH  Google Scholar 

  33. V. B. Zylev, “G-composedness and G-complementability,” Sov. Math., Dokl. 9, 403–404 (1968) [transl. from Dokl. Akad. Nauk SSSR 179 (3), 529–530 (1968)].

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Gaifullin.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Vol. 302, pp. 143–160.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaifullin, A.A., Ignashchenko, L.S. Dehn Invariant and Scissors Congruence of Flexible Polyhedra. Proc. Steklov Inst. Math. 302, 130–145 (2018). https://doi.org/10.1134/S0081543818060068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543818060068

Navigation