Skip to main content
Log in

Cobordisms, Manifolds with Torus Action, and Functional Equations

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The paper is devoted to applications of functional equations to well-known problems of compact torus actions on oriented smooth manifolds. These include the problem of Hirzebruch genera of complex cobordism classes that are determined by complex, almost complex, and stably complex structures on a fixed manifold. We consider actions with connected stabilizer subgroups. For each such action with isolated fixed points, we introduce rigidity functional equations. This is based on the localization theorem for equivariant Hirzebruch genera. We consider actions of maximal tori on homogeneous spaces of compact Lie groups and torus actions on toric and quasitoric manifolds. The arising class of equations contains both classical and new functional equations that play an important role in modern mathematical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties,” J. Algebr. Geom. 3 (3), 493–535 (1994).

    MathSciNet  MATH  Google Scholar 

  2. A. Borel and F. Hirzebruch, “Characteristic classes and homogeneous spaces. I,” Am. J. Math. 80 (2), 458–538 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Borel and F. Hirzebruch, “Characteristic classes and homogeneous spaces. II,” Am. J. Math. 81 (2), 315–382 (1959).

    Article  MathSciNet  Google Scholar 

  4. V. M. Bukhshtaber, “Functional equations associated with addition theorems for elliptic functions and twovalued algebraic groups,” Russ. Math. Surv. 45 (3), 213–215 (1990) [transl. from Usp. Mat. Nauk 45 (3), 185–186 (1990)].

    Article  MathSciNet  MATH  Google Scholar 

  5. V. M. Buchstaber, “Complex cobordism and formal groups,” Russ. Math. Surv. 67 (5), 891–950 (2012) [transl. from Usp. Mat. Nauk 67 (5), 111–174 (2012)].

    Article  MathSciNet  MATH  Google Scholar 

  6. V. M. Buchstaber and E. Yu. Bunkova, “Manifolds of solutions for Hirzebruch functional equations,” Proc. Steklov Inst. Math. 290, 125–137 (2015) [transl. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 136–148 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  7. V. M. Buchstaber, G. Felder, and A. P. Veselov, “Elliptic Dunkl operators, root systems, and functional equations,” Duke Math. J. 76 (3), 885–911 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. M. Bukhshtaber and I. M. Krichever, “Vector addition theorems and Baker–Akhiezer functions,” Theor. Math. Phys. 94 (2), 142–149 (1993) [transl. from Teor. Mat. Fiz. 94 (2), 200–212 (1993)].

    Article  MathSciNet  MATH  Google Scholar 

  9. V. M. Buchstaber and E. Yu. Netay, “CP(2)-multiplicative Hirzebruch genera and elliptic cohomology,” Russ. Math. Surv. 69 (4), 757–759 (2014) [transl. from Usp. Mat. Nauk 69 (4), 181–182 (2014)].

    Article  MATH  Google Scholar 

  10. V. M. Buhštaber and S. P. Novikov, “Formal groups, power systems and Adams operators,” Math. USSR, Sb. 13 (1), 80–116 (1971) [transl. from Mat. Sb. 84 (1), 81–118 (1971)].

    Article  Google Scholar 

  11. V. M. Buchstaber and T. E. Panov, Torus Actions in Topology and Combinatorics (MTsNMO, Moscow, 2004) [in Russian].

    MATH  Google Scholar 

  12. V. M. Buchstaber and T. E. Panov, Toric Topology (Am. Math. Soc., Providence, RI, 2015), Math. Surv. Monogr. 204.

    Book  MATH  Google Scholar 

  13. V. Buchstaber, T. Panov, and N. Ray, “Toric genera,” Int. Math. Res. Not. 2010 (16), 3207–3262 (2010); arXiv: 0908.3298 [math.AT].

    MathSciNet  MATH  Google Scholar 

  14. V. M. Bukhshtaber and N. Ray, “Toric manifolds and complex cobordisms,” Russ. Math. Surv. 53 (2), 371–373 (1998) [transl. from Usp. Mat. Nauk 53 (2), 139–140 (1998)].

    Article  MathSciNet  MATH  Google Scholar 

  15. V. M. Buchstaber and N. Ray, “The universal equivariant genus and Krichever’s formula,” Russ. Math. Surv. 62 (1), 178–180 (2007) [transl. from Usp. Mat. Nauk 62 (1), 195–196 (2007)].

    Article  MathSciNet  MATH  Google Scholar 

  16. V. M. Buchstaber and S. Terzić, “Equivariant complex structures on homogeneous spaces and their cobordism classes,” in Geometry, Topology, and Mathematical Physics: S. P. Novikov’s Seminar, 2006–2007 (Am. Math. Soc., Providence, RI, 2008), AMS Transl., Ser. 2, 224, pp. 27–57; arXiv: 0801.3108 [math.AT].

    Chapter  Google Scholar 

  17. V. M. Buchstaber and S. Terzić, “Toric genera of homogeneous spaces and their fibrations,” Int. Math. Res. Not. 2013 (6), 1324–1403 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. M. Buchstaber and S. Terzić, “Toric topology of the complex Grassmann manifolds,” arXiv: 1802.06449v2 [math.AT].

  19. V. M. Bukhshtaber and A. P. Veselov, “Dunkl operators, functional equations, and transformations of elliptic genera,” Russ. Math. Surv. 49 (2), 145–147 (1994) [transl. from Usp. Mat. Nauk 49 (2), 147–148 (1994)].

    Article  MathSciNet  MATH  Google Scholar 

  20. V. M. Buchstaber and A. P. Veselov, “On a remarkable functional equation in the theory of generalized Dunkl operators and transformations of elliptic genera,” Math. Z. 223 (4), 595–607 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Yu. Bunkova, “Hirzebruch functional equation: Classification of solutions,” Proc. Steklov Inst. Math. 302, 33–47 (2018) [transl. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 302, 41–56 (2018)].

    Google Scholar 

  22. P. E. Conner and E. E. Floyd, Differentiable Periodic Maps (Academic, New York, 1964), Ergeb. Math. Grenzgeb., Neue Flg. 33.

    Book  MATH  Google Scholar 

  23. M. W. Davis and T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions,” Duke Math. J. 62 (2), 417–451 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. J. Duistermaat and G. J. Heckman, “On the variation in the cohomology of the symplectic form of the reduced phase space,” Invent. Math. 69, 259–268 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Etingof, G. Felder, X. Ma, and A. Veselov, “On elliptic Calogero–Moser systems for complex crystallographic reflection groups,” J. Algebra 329, 107–129 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  26. S. M. Gusein-Zade, “U-actions of a circle and fixed points,” Math. USSR, Izv. 5 (5), 1127–1143 (1971) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 35 (5), 1120–1136 (1971)].

    Article  MATH  Google Scholar 

  27. S. M. Gusein-Zade, “On the action of a circle on manifolds,” Math. Notes 10 (5), 731–734 (1971) [transl. from Mat. Zametki 10 (5), 511–518 (1971)].

    Article  MathSciNet  Google Scholar 

  28. Harish-Chandra, “Differential operators on a semisimple Lie algebra,” Am. J. Math. 79 (1), 87–120 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Hille and H. Skarke, “Reflexive polytopes in dimension 2 and certain relations in SL2(Z),” J. Algera Appl. 1 (2), 159–173 (2002).

    Article  MATH  Google Scholar 

  30. F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd ed. (Springer, Berlin, 1966).

    Book  MATH  Google Scholar 

  31. F. Hirzebruch, T. Berger, and R. Jung, Manifolds and Modular Forms (Vieweg, Braunschweig, 1992), Aspects Math. E20.

    Book  MATH  Google Scholar 

  32. C. Itzykson and J.-B. Zuber, “The planar approximation. II,” J. Math. Phys. 21 (3), 411–421 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Kreuzer and H. Skarke, “Classification of reflexive polyhedra in three dimensions,” Adv. Theor. Math. Phys. 2 (4), 853–871 (1998); arXiv: hep-th/9805190v1.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Kreuzer and H. Skarke, “Complete classification of reflexive polyhedra in four dimensions,” Adv. Theor. Math. Phys. 4 (6), 1209–1230 (2000); arXiv: hep-th/0002240v1.

    Article  MathSciNet  MATH  Google Scholar 

  35. I. M. Kričever, “Formal groups and the Atiyah–Hirzebruch formula,” Math. USSR, Izv. 8 (6), 1271–1285 (1974) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 38 (6), 1289–1304 (1974)].

    Article  Google Scholar 

  36. I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles,” Funct. Anal. Appl. 14 (4), 282–290 (1980) [transl. from Funkts. Anal. Prilozh. 14 (4), 45–54 (1980)].

    Article  MATH  Google Scholar 

  37. I. M. Krichever, “Generalized elliptic genera and Baker–Akhiezer functions,” Math. Notes 47 (2), 132–142 (1990) [transl. from Mat. Zametki 47 (2), 34–45 (1990)].

    Article  MathSciNet  MATH  Google Scholar 

  38. A. A. Kustarev, “Equivariant almost complex structures on quasi-toric manifolds,” Russ. Math. Surv. 64 (1), 156–158 (2009) [transl. from Usp. Mat. Nauk 64 (1), 153–154 (2009)].

    Article  MathSciNet  MATH  Google Scholar 

  39. A. A. Kustarev, “Equivariant almost complex structures on quasitoric manifolds,” Proc. Steklov Inst. Math. 266, 133–141 (2009) [transl. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 266, 140–148 (2009)].

    Article  MathSciNet  MATH  Google Scholar 

  40. I. Yu. Limonchenko, Z. Lü, and T. E. Panov, “Calabi–Yau hypersurfaces and SU-bordism,” Proc. Steklov Inst. Math. 302, 270–278 (2018) [transl. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 302, 287–295 (2018)].

    Google Scholar 

  41. J. Milnor, “On the cobordism ring Ω and a complex analogue. I,” Am. J. Math. 82 (3), 505–521 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  42. S. P. Novikov, “Some problems in the topology of manifolds connected with the theory of Thom spaces,” Sov. Math., Dokl. 1, 717–720 (1960) [transl. from Dokl. Akad. Nauk SSSR 132 (5), 1031–1034 (1960)].

    MathSciNet  MATH  Google Scholar 

  43. S. P. Novikov, “Homotopy properties of Thom complexes,” Mat. Sb. 57 (4), 407–442 (1962).

    MathSciNet  Google Scholar 

  44. S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory,” Math. USSR, Izv. 1 (4), 827–913 (1967) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 31 (4), 855–951 (1967)].

    Article  MATH  Google Scholar 

  45. S. P. Novikov, “Adams operators and fixed points,” Math. USSR, Izv. 2 (6), 1193–1211 (1968) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 32 (6), 1245–1263 (1968)].

    Article  MATH  Google Scholar 

  46. S. P. Novikov, “Topology,” in Topology–1 (VINITI, Moscow, 1986), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 12, pp. 5–252. Engl. transl. in Topology I: General Survey (Springer, Berlin, 1996), Encycl. Math. Sci. 12, pp. 1–319.

    Google Scholar 

  47. S. P. Novikov, “Topology in the 20th century: A view from the inside,” Russ. Math. Surv. 59 (5), 803–829 (2004) [transl. from Usp. Mat. Nauk 59 (5), 3–28 (2004)].

    Article  MathSciNet  MATH  Google Scholar 

  48. S. Ochanine, “Sur les genres multiplicatifs définis par des intégrales elliptiques,” Topology 26 (2), 143–151 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  49. A. V. Pukhlikov and A. G. Khovanskii, “A Riemann–Roch theorem for integrals and sums of quasipolynomials over virtual polytopes,” St. Petersburg Math. J. 4 (4), 789–812 (1993) [transl. from Algebra Anal. 4 (4), 188–216 (1992)].

    MathSciNet  MATH  Google Scholar 

  50. R. E. Stong, Notes on Cobordism Theory (Princeton Univ. Press, Princeton, NJ, 1968), Math. Notes.

    MATH  Google Scholar 

  51. R. Thom, “Quelques propriétés globales des variétés différentiables,” Comment. Math. Helv. 28, 17–86 (1954).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Buchstaber.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Vol. 302, pp. 57–97.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchstaber, V.M. Cobordisms, Manifolds with Torus Action, and Functional Equations. Proc. Steklov Inst. Math. 302, 48–87 (2018). https://doi.org/10.1134/S0081543818060044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543818060044

Navigation