Skip to main content
Log in

Real Soliton Lattices of the Kadomtsev Petviashvili II Equation and Desingularization of Spectral Curves: The GrTP(2, 4) Case

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Dedicated to Professor S. P. Novikov on the occasion of his 80th birthday

Abstract

We apply the general construction developed in our previous papers to the first nontrivial case of GrTP(2, 4). In particular, we construct finite-gap real quasi-periodic solutions of the KP-II equation in the form of a soliton lattice corresponding to a smooth M-curve of genus 4 which is a desingularization of a reducible rational M-curve for soliton data in GrTP(2, 4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Abenda, “On a family of KP multi-line solitons associated to rational degenerations of real hyperelliptic curves and to the finite non-periodic Toda hierarchy,” J. Geom. Phys. 119, 112–138 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Abenda, “On some properties of KP-II soliton divisors in GrTP(2, 4),” Ric. Mat., doi: 10.1007/s11587-018-0381-0 (2018).

    Google Scholar 

  3. S. Abenda and P. G. Grinevich, “Rational degenerations of M-curves, totally positive Grassmannians and KP2-solitons,” Commun. Math. Phys. 361 (3), 1029–1081 (2018); arXiv: 1506.00563 [nlin.SI].

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Abenda and P. G. Grinevich, “KP theory, plane-bipartite networks in the disk, and rational degenerations of M-curves,” arXiv: 1801.00208 [math-ph].

  5. S. Abenda and P. G. Grinevich, “Reducible M-curves for Le-networks in the totally-nonnegative Grassmannian and KP-II multiline solitons,” arXiv: 1805.05641 [math-ph].

  6. E. Arbarello, M. Cornalba, and P. A. Griffiths, Geometry of Algebraic Curves (Springer, Heidelberg, 2011), Vol. II, with a contribution by J. D. Harris, Grundl. Math. Wiss. 268.

    Book  MATH  Google Scholar 

  7. N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, A. Postnikov, and J. Trnka, Grassmannian Geometry of Scattering Amplitudes (Cambridge Univ. Press, Cambridge, 2016).

    Book  MATH  Google Scholar 

  8. E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations (Springer, Berlin, 1994), Springer Ser. Nonlinear Dyn.

    MATH  Google Scholar 

  9. A. I. Bobenko and L. A. Bordag, “Periodic multiphase solutions of the Kadomtsev–Petviashvili equation,” J. Phys. A.: Math. Gen. 22 (9), 1259–1274 (1989).

    Article  MATH  Google Scholar 

  10. M. Boiti, F. Pempinelli, A. K. Pogrebkov, and B. Prinari, “Towards an inverse scattering theory for non-decaying potentials of the heat equation,” Inverse Probl. 17 (4), 937–957 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. M. Buchstaber and A. A. Glutsyuk, “Total positivity, Grassmannian and modified Bessel functions,” arXiv: 1708.02154 [math.DS].

  12. V. M. Buchstaber and S. Terzić, “Topology and geometry of the canonical action of T 4 on the complex Grassmannian G4,2 and the complex projective space CP5,” Moscow Math. J. 16 (2), 237–273 (2016).

    MathSciNet  MATH  Google Scholar 

  13. V.M Buchstaber and S. Terzić, “Toric topology of the complex Grassmann manifolds,” arXiv: 1802.06449 [math.AT].

  14. S. Chakravarty and Y. Kodama, “Soliton solutions of the KP equation and application to shallow water waves,” Stud. Appl. Math. 123 (1), 83–151 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. Computational Approach to Riemann Surfaces, Ed. by A. I. Bobenko and C. Klein (Springer, Heidelberg, 2011), Lect. Notes Math. 2013.

    MATH  Google Scholar 

  16. B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, and M. Schmies, “Computing Riemann theta functions,” Math. Comput. 73 (247), 1417–1442 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Deconinck and M. van Hoeij, “Computing Riemann matrices of algebraic curves,” Physica D 152–153, 28–46 (2001).

    Google Scholar 

  18. B. Deconinck and H. Segur, “The KP equation with quasiperiodic initial data,” Physica D 123 (1–4), 123–152 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  19. V. S. Dryuma, “Analytic solution of the two-dimensional Korteweg–de Vries (KdV) equation,” JETP Lett. 19 (12), 387–388 (1974) [transl. from Pis’ma Zh. Eksp. Teor. Fiz. 19 (12), 753–755 (1974)].

    Google Scholar 

  20. B. A. Dubrovin, “Theta functions and non-linear equations,” Russ. Math. Surv. 36 (2), 11–92 (1981) [transl. from Usp. Mat. Nauk 36 (2), 11–80 (1981)].

    Article  MATH  Google Scholar 

  21. B. A. Dubrovin, R. Flickinger, and H. Segur, “Three-phase solutions of the Kadomtsev–Petviashvili equation,” Stud. Appl. Math. 99 (2), 137–203 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  22. B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, “Integrable systems. I,” in Dynamical Systems–4 (VINITI, Moscow, 1985), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 4, pp. 179–284; Engl. transl. in Dynamical Systems IV: Symplectic Geometry and Its Applications, 2nd ed. (Springer, Berlin, 2001), Encycl. Math. Sci. 4, pp. 177–332.

    Google Scholar 

  23. B. A. Dubrovin and S. M. Natanzon, “Real theta-function solutions of the Kadomtsev–Petviashvili equation,” Math. USSR, Izv. 32 (2), 269–288 (1989) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 52 (2), 267–286 (1988)].

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Fomin and A. Zelevinsky, “Cluster algebras. I: Foundations,” J. Am. Math. Soc. 15 (2), 497–529 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Frauendiener and C. Klein, “Computational approach to compact Riemann surfaces,” Nonlinearity 30 (1), 138–172 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  26. F. R. Gantmacher and M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, rev. ed. (Gostekhizdat, Moscow, 1950; AMS Chelsea Publ., Providence, RI, 2002).

    MATH  Google Scholar 

  27. P. Griffiths and J. Harris, Principles of Algebraic Geometry (J. Wiley & Sons, New York, 1978).

    MATH  Google Scholar 

  28. D. A. Gudkov, “The topology of real projective algebraic varieties,” Russ. Math. Surv. 29 (4), 1–79 (1974) [transl. from Usp. Mat. Nauk 29 (4), 3–79 (1974)].

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Harnack, “Ueber die Vieltheiligkeit der ebenen algebraischen Curven,” Math. Ann. 10, 189–198 (1876).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. R. Its and V. B. Matveev, “On a class of solutions of the Korteweg–de Vries equation,” in Problems of Mathematical Physics, Issue 8: Differential Equations. Spectral Theory. Wave Propagation Theory (Leningr. Univ., Leningrad, 1976), pp. 70–92 [in Russian].

    Google Scholar 

  31. B. B. Kadomtsev and V. I. Petviashvili, “On the stability of solitary waves in weakly dispersing media,” Sov. Phys., Dokl. 15, 539–541 (1970) [transl. from Dokl. Akad. Nauk SSSR 192 (4), 753–756 (1970)].

    MATH  Google Scholar 

  32. C. Kalla and C. Klein, “On the numerical evaluation of algebro-geometric solutions to integrable equations,” Nonlinearity 25 (3), 569–596 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Kalla and C. Klein, “Computation of the topological type of a real Riemann surface,” Math. Comput. 83 (288), 1823–1846 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Karlin, Total Positivity (Stanford Univ. Press, Stanford, CA, 1968), Vol. 1.

    MATH  Google Scholar 

  35. Y. Kodama and L. Williams, “The Deodhar decomposition of the Grassmannian and the regularity of KP solitons,” Adv. Math. 244, 979–1032 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Kodama and L. Williams, “KP solitons and total positivity for the Grassmannian,” Invent. Math. 198 (3), 637–699 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  37. I. M. Kričever, “Algebro-geometric construction of the Zaharov–Šabat equations and their periodic solutions,” Sov. Math., Dokl. 17, 394–397 (1976) [transl. from Dokl. Akad. Nauk SSSR 227 (2), 291–294 (1976)].

    Google Scholar 

  38. I. M. Krichever, “Integration of nonlinear equations by the methods of algebraic geometry,” Funct. Anal. Appl. 11 (1), 12–26 (1977) [transl. from Funkts. Anal. Prilozh. 11 (1), 15–31 (1977)].

    Article  MathSciNet  MATH  Google Scholar 

  39. I. M. Krichever, “Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model,” Funct. Anal. Appl. 20 (3), 203–214 (1986) [transl. from Funkts. Anal. Prilozh. 20 (3), 42–54 (1986)].

    Article  MATH  Google Scholar 

  40. G. Lusztig, “Total positivity in reductive groups,” in Lie Theory and Geometry: In Honor of B. Kostant (Birkhäuser, Boston, 1994), Prog. Math. 123, pp. 531–568.

    Google Scholar 

  41. G. Lusztig, “Total positivity in partial flag manifolds,” Represent. Theory 2, 70–78 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  42. T. M. Malanyuk, “A class of exact solutions of the Kadomtsev–Petviashvili equation,” Russ. Math. Surv. 46 (3), 225–227 (1991) [transl. from Usp. Mat. Nauk 46 (3), 193–194 (1991)].

    Article  MathSciNet  MATH  Google Scholar 

  43. V. B. Matveev, “Some comments on the rational solutions of the Zakharov–Schabat equations,” Lett. Math. Phys. 3, 503–512 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Mumford, Tata Lectures on Theta. I, II, 2nd ed. (Birkhäuser, Basel, 2007), Modern Birkhäuser Classics.

    Book  Google Scholar 

  45. S. M. Natanzon, “Moduli of real algebraic surfaces, and their superanalogues. Differentials, spinors, and Jacobians of real curves,” Russ. Math. Surv. 54 (6), 1091–1147 (1999) [transl. from Usp. Mat. Nauk 54 (6), 3–60 (1999)].

    Article  MATH  Google Scholar 

  46. S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation,” Funct. Anal. Appl. 8 (3), 236–246 (1974) [transl. from Funkts. Anal. Prilozh. 8 (3), 54–66 (1974)].

    Article  MathSciNet  MATH  Google Scholar 

  47. A. R. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform (Academic, Amsterdam, 2010).

    MATH  Google Scholar 

  48. A. Pinkus, Totally Positive Matrices (Cambridge Univ. Press, Cambridge, 2010), Cambridge Tracts Math. 181.

    MATH  Google Scholar 

  49. A. Postnikov, “Total positivity, Grassmannians, and networks,” arXiv:math/0609764 [math.CO].

  50. M. Sato, “Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds,” in Random Systems and Dynamical Systems: Proc. Symp., Kyoto, 1981 (Kyoto Univ., Kyoto, 1981), RIMS Kokyuroku 439, pp. 30–46.

    Google Scholar 

  51. G. Springer, Introduction to Riemann Surfaces (Addison-Wesley, Reading, MA, 1957).

    MATH  Google Scholar 

  52. C. Swierczewski and B. Deconinck, “Computing Riemann theta functions in Sage with applications,” Math. Comput. Simul. 127, 263–272 (2016).

    Article  MathSciNet  Google Scholar 

  53. I. A. Taimanov, “Singular spectral curves in finite-gap integration,” Russ. Math. Surv. 66 (1), 107–144 (2011) [transl. from Usp. Mat. Nauk 66 (1), 111–150 (2011)].

    Article  MathSciNet  MATH  Google Scholar 

  54. O. Ya. Viro, “Real algebraic plane curves: Constructions with controlled topology,” Leningr. Math. J. 1 (5), 1059–1134 (1990) [transl. from Algebra Anal. 1 (5), 1–73 (1989)].

    MATH  Google Scholar 

  55. V. E. Zakharov and A. B. Shabat, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I,” Funct. Anal. Appl. 8 (3), 226–235 (1974) [transl. from Funkts. Anal. Prilozh. 8 (3), 43–53 (1974)].

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonetta Abenda.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Vol. 302, pp. 7–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abenda, S., Grinevich, P.G. Real Soliton Lattices of the Kadomtsev Petviashvili II Equation and Desingularization of Spectral Curves: The GrTP(2, 4) Case. Proc. Steklov Inst. Math. 302, 1–15 (2018). https://doi.org/10.1134/S0081543818060019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543818060019

Navigation